Engineering and Technology Progression

This progression describes key elements in the engineering design process. The design process is a systematic approach to problem solving, utilizing many different practices. Thus, the progression defines *process*, and the *context* for design is left to the discretion of the teacher. However, it might be prudent to choose a context for a design problem that could be initiated in elementary grades, and further developed in middle and high school.

In elementary grades, students learn that humans change the natural world for various reasons, including satisfying basic wants and needs. They learn that there can be many solutions to a specific problem that humans want to solve (criteria), but that some solutions may be limited based on available materials and resources (constraints).

In middle school students learn that the more precisely the criteria and constraints can be defined, the more likely the designed solution will be successful. In addition, they learn to evaluate various solutions systematically relative to how well they meet the defined criteria and constraints.

In high school the criteria and constraints include more complexity, by considering things like cost, safety, reliability, and aesthetics, as well as social, cultural and environmental impacts.

Grade 4: Page 2

Grade 7: Page 3

Grade 11: Page 4

Grade 4:

Alternate KSA Aligned to KCAS for Science:

Define a simple design problem reflecting a need or a want with criteria for success and constraints (limits) on materials, time, or cost.

3-5-ETS1-1: Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time or cost.

SEP (Science and	DCI (Disciplinary Core	CC (Crosscutting
Engineering	Ideas)	Concepts)
Practices)		
Define a simple	Possible solutions to a	People's needs and
design problem that	problem are limited by	wants change over
can be solved	available materials and	time, as do their
through the	resources (constraints).	demands for new and
development of an	The success of a designed	improved technologies.
object, tool,	solution is determined by	
process, or system	considering the desired	
and includes	features of a solution	
several criteria for	(criteria). Different	
success and	proposals for solutions can	
constraints on	be compared on the basis	
materials, time or	of how well each one meets	
cost.	the specified criteria for	
	success or how well each	
	takes the constraints into	
	account.	

Grade 7:

Alternate KSA Aligned to KCAS for Science:

Define the criteria and constraints of a design problem to ensure a successful solution, and potential impacts on people and the environment that may limit possible solutions.

MS-ETS1-1: Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

SEP (Science and	DCI (Disciplinary Core	CC (Crosscutting
Engineering	Ideas)	Concepts)
Practices)		
Define a design	The more precisely a	The uses of
problem that can be	design task's criteria and	technologies and
solved through the	constraints can be defined,	limitations on their use
development of an	the more likely it is that the	are driven by individual
object, tool, process	designed solution will be	or societal needs,
or system and	successful. Specification of	desires, and values; by
includes multiple	constraints includes	the findings of scientific
criteria and	consideration of scientific	research; and by
constraints,	principles and other	differences in such
including scientific	relevant knowledge that are	factors as climate,
knowledge that may	likely to limit possible	natural resources and
limit possible	solutions.	economic conditions.
solutions.		

Grade 11:

Alternate KSA Aligned to KCAS for Science:

Evaluate a solution to a real-world problem based on criteria and trade-offs that account for a range of constraints including cost, safety, reliability as well as social and environmental impacts.

HS-ETS1-3: Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural and environmental impacts.

SEP (Science and	DCI (Disciplinary Core	CC (Crosscutting
Engineering	Ideas)	Concepts)
Practices)		
Analyze complex	When evaluating solutions,	New technologies can
real-world problems	it is important to take into	have deep impacts on
by specifying	account a range of	society and the
criteria and	constraints, including cost,	environment, including
constraints for	safety, reliability, and	some that were not
successful	aesthetics, and to consider	anticipated. Analysis
solutions.	social, cultural and	of costs and benefits is
	environmental impacts.	a critical aspect of
		decisions about
		technology.