Middle School Engineering Technology Education Standards

<u>Academic</u>

- A1 Utilize effective verbal and non-verbal communication skills
- A2 Participate in conversation, discussion and group presentations
- A3 Locate and interpret written information
- A4 Identify relevant details, facts and specifications
- A5 Record information accurately and completely
- A6 Demonstrate competence in organizing, writing and editing using correct vocabulary, spelling, grammar and punctuation
- A7 Demonstrate the ability to write clearly and concisely
- A8 Implement effective decision-making skills
- A9 Perform basic and higher-level math operations (e.g., addition, subtraction, multiplication, division, decimals, fractions, units of conversion, averaging, percentage, proportion, ratios)
- A10 Use tables, graphs, diagrams and charts to obtain or convey information
- A11 Identify the components of a budget and how one is created
- A12 Set personal financial goals and develop a plan for achieving them
- A13 Identify and apply Internet security practices (e.g., password security, login, logout, log off, lock computer)
- A14 Use technology appropriately to enhance task
- A15 Demonstrate appropriate etiquette when using e-communications (e.g., cell phone, email, conference calls)

Employability

- E1 Demonstrate positive work ethic when completing new tasks
- E2 Abide by workplace policies and procedures
- E3 Demonstrate honesty and reliability
- E4 Demonstrate ethical characteristics and behaviors
- E5 Demonstrate polite and respectful behavior toward others
- E6 Demonstrate personal accountability in the workplace
- E7 Demonstrate pride in work
- E8 Demonstrate ability to stay on task to produce high quality deliverables on time
- E9 Explain the importance of respect for feelings, values and beliefs of others
- E10 Identify strategies to bridge cultural/generational differences and use differing perspectives to increase overall quality of work
- E11 Recognize the challenges and advantages of diversity in the workplace
- E12 Demonstrate effective team skills and evaluate their importance in the workplace (e.g., setting goals, listening, following directions, questioning, dividing work)

- E13 Contribute new ideas while valuing varying ideas and opinions
- E14 Implement conflict resolution strategies and problem-solving skills
- E15 Recognize the importance of maintaining an age appropriate job and pursuing a potential career
- E16 Define jobs associated with a specific career path or profession
- E17 Seek and capitalize on self-improvement opportunities
- E18 Accept and provide constructive criticism

Personal Growth

- OA1 Examine the impact of heredity, environment and other factors on human growth and development across the lifespan (i.e. Maslow's Hierarchy of Needs)
- OA2 Examine individual and family values to make choices to satisfy needs, wants and goals
- OA3 Implement the decision making process
- OA4 Demonstrate verbal and nonverbal communication skills that contribute to positive relationships
- OA5 Examine the positive and negative impacts of technology on individuals, families, and society
- OA6 Determine factors and behaviors that contribute to healthy and unhealthy relationships
- OA7 Examine the effect of self-esteem and self-image on relationships
- OA8 Analyze the resources available to address the impact of risky behaviors on individuals and families
- OA9 Evaluate effective conflict prevention and management techniques in relationships

General Lab Safety Rules and Procedures

- OB1 Describe general lab/shop safety rules and procedures
- OB2 Comply with the required use of personal protection equipment (PPE) (e.g., safety glasses, ear protection, gloves, shoes) during lab/shop activities
- OB3 Identify and wear appropriate clothing for lab/shop activities
- OB4 Secure hair and jewelry for lab/shop activities
- OB5 Perform housekeeping duties
- OB6 Follow verbal and written instructions to complete work assignments
- OB7 Demonstrate ergonomically safe use of lab equipment, furniture and materials
- OB8 Identify the location of the posted evacuation routes

Hand Tools

- OC1 Identify hand tools and their appropriate usage
- OC2 Demonstrate proper techniques when using hand tools
- OC3 Demonstrate safe handling and use of appropriate tools

Power Tools and Equipment

- OD1 Identify power tools/equipment (e.g., band saw, drill press, table saw, sanders, portable power tools) and their appropriate usage
- OD2 Demonstrate safe and proper techniques when using power tools and equipment
- OD3 Demonstrate proper cleaning, storage and maintenance of power tools and equipment

History of Science, Technology, Engineering and Mathematics (STEM)

OE1 Define Science, Technology, Engineering and Mathematics and their relationship to each

other

- OE2 Identify engineering & technology achievements (e.g., space race, computer technology, aqueducts, skyscrapers, bridges, subways, airports) throughout history
- OE3 Identify famous inventors (e.g., Edison, Tesla, Bell, da Vinci, Washington Carver, Ford) and their achievements throughout history
- OE4 Analyze how an invention or innovation was influenced by its historical context
- OE5 Compare various technologies and how they have contributed to human progress
- OE6 Investigate the evolution of a product and describe product life cycle
- OE7 Explain how technology and engineering are closely linked to creativity, which can result in both intended and unintended innovations

Careers in STEM

OF1 Investigate STEM careers, training, professional organizations and associated opportunities

- OF2 Describe similarities and differences in various STEM Careers
- OF3 Explore career opportunities and list the educational requirements for several STEM fields of interest
- OF4 Research careers related to various engineering fields and their education requirements
- OF5 Research STEM fields including non-traditional career paths to understand workload, education, job outlook and salary
- OF6 Research the pros/cons of STEM careers and what their impact is on the Kentucky workforce

Ethics in Engineering

- OG1 Introduce, discuss and explore ethical and technical issues contributing to an engineering disaster
- OG2 Examine the ways that technology can have both positive and negative effects at the same time
- OG3 Connect with Engineering and Engineering Technology professionals in your community to discuss engineering ethics

Engineering Design Process

- OH1 Identify several design processes
- OH2 Explain how a design process is a systematic, iterative, problem-solving method that produces solutions to meet human needs and wants
- OH3 Identify the activities that occur during each phase of a design process
- OH4 Apply the steps of a design process to solve a variety of design problems
- OH5 Utilize conceptual, mathematical and physical models to evaluate design solutions
- OH6 Incorporate computer technology to assist in organizing and analyzing data collected during a design process
- OH7 Document various design process solutions and communicate to the intended audience
- OH8 Adapt and change as problems arise in the design process
- OH9 Demonstrate best practices when working through the design process on a team

Utilize a Digital Portfolio to Apply an Engineering Design Process

- OI1 Present and justify the problem
- OI2 Document and analyze prior solution(s) attempt
- OI3 Present and justify a solution's criteria and constraints
- Ol4 Generate, analyze and select a viable concept
- OI5 Construct a testable prototype
- OI6 Collect and analyze data
- OI7 Document external evaluations
- OI8 Reflect on the design process
- OI9 Present the digital project portfolio and design solution
- OI10 Write like an engineer

Freehand Technical Sketching Techniques

- OJ1 Develop design ideas using freehand sketching
- OJ2 Identify the six primary orthographic views
- OJ3 Create pictorial and multiview sketches
- OJ4 Create rough, refined and presentation sketches
- OJ5 Utilize the alphabet of lines (i.e. object, hidden, center)
- OJ6 Legibly annotate sketches
- OJ7 Interpret basic symbols and terminology

Measuring and Scaling Techniques

- OK1 Identify industry standard units of measure
- OK2 Convert between industry standard units of measure
- OK3 Demonstrate proper use of precision measuring tools
- OK4 Make precision measurements to the degree of accuracy required by the specifications using appropriate instruments
- OK5 Measure effectively and accurately to accomplish engineering-related tasks

Engineering Documentation and Communication Procedures

- OL1 Demonstrate record keeping procedures by utilizing an engineering notebook
- OL2 Utilize appropriate digital file management techniques
- OL3 Identify basic components of a computer system and their function
- OL4 Present design solutions in a clear and concise manner
- OL5 Utilize appropriate presentation techniques

Computer Aided Design (CAD)

- OM1 Describe the purpose of CAD software
- OM2 Interpret basic elements of a technical drawing (e.g., title block, dimensions, line types)
- OM3 Describe and construct various types of CAD drawings (i.e., part, assembly, drawing)
- OM4 Create various mock-ups, scale models and working prototypes based on CAD drawings

Rapid Prototyping Technology

- ON1 Discuss current and emerging rapid prototyping applications in a variety of industries
- ON2 Demonstrate an understanding of rapid prototyping using a 3D printer to solve engineering related problems
- ON3 Demonstrate an understanding of rapid prototyping using a laser engraver to solve engineering related problems
- ON4 Describe the difference between additive and subtractive modeling

Aviation and Flight

- OO1 Identify the principles of flight (e.g., lift, drag, thrust, gravity)
- OO2 Develop and construct models to test flight characteristics of specified vehicles using appropriate materials
- OO3 Explore the application of Newton's laws and Bernoulli's principle of flight
- OO4 Research and explain the role and future of autonomous/unmanned aircraft
- OO5 Execute a mission for an Unmanned Aerial System (UAS)
- OO6 Explain applications for UAS in various engineering fields

Structures

- OP1 Research various types of structures (e.g., bridges, towers, trusses)
- OP2 Identify forces (e.g., tension, compression, torque, shear) that act on structures
- OP3 Construct structures to calculate forces

Electricity and Electronics

- OQ1 Interpret basic electrical schematics
- OQ2 Compare and contrast the behavior of electrical circuits with parallel and series circuit designs

- OQ3 Distinguish between digital and analog components
- OQ4 Demonstrate soldering through various projects
- OQ5 Demonstrate breadboarding through various projects
- OQ6 Determine resistor values based on a color code chart
- OQ7 Demonstrate proper use of various electrical equipment used to measure electrical properties
- OQ8 Demonstrate an understanding of electronics using a microcontroller to solve engineering related problems

Machine Design and Manufacturing Systems

- OR1 Distinguish between the six simple machines, their attributes and components
- OR2 Measure forces and distances related to simple machines
- OR3 Calculate mechanical advantage of all simple machines
- OR4 Design, construct and test various simple machines
- OR5 Design, construct and test a compound machine
- OR6 Identify and calculate the advantages and disadvantages of different types of gears
- OR7 Design, construct and calculate various gear ratios
- OR8 Define, identify and demonstrate forms of potential and kinetic energy
- OR9 Identify different machine elements (e.g., cam mechanisms, linkages, belt drives) in motion and their components
- OR10 Design, build and test a machine utilizing multiple machine elements and components that also meets safety requirements
- OR11 Create a control program to accomplish an objective using various inputs and outputs
- OR12 Apply basic physics concepts (e.g., velocity, speed, force, distance, torque, fluid power) to solve various design problems
- OR13 Calculate work and power
- OR14 Create an open-loop system that has no feedback path and requires human intervention
- OR15 Create a closed-loop system that has a feedback path and requires no human intervention

Thermodynamics

- OS1 Describe convection, conduction and radiation as they apply to thermal energy transfer
- OS2 Design, construct and test insulation materials for reducing thermal energy transfer

Dynamics

- OT1 Describe Newton's three laws of motion
- OT2 Describe and calculate the impact of torque on a rotating system

Robotics

OU1 Define common types of robots

- OU2 Define work envelope
- OU3 Construct basic robotic systems using technical drawings
- OU4 Identify various inputs and outputs used in robotic systems
- OU5 Describe accuracy and repeatability in the field of robotics
- OU6 Demonstrate an understanding of robotics, its history, applications, evolution and future
- OU7 Demonstrate an understanding of the impact of robotics on the manufacturing process
- OU8 Demonstrate an understanding of 3D modeling concepts as it relates to robotics
- OU9 Design and build a working model of a robot
- OU10 Construct and evaluate advantages and disadvantages of different structures/chassis
- OU11 Predict robot motion resulting from movement of an actuator
- OU12 Apply basic programming to robotic systems to solve various engineering related problems
- OU13 Explore Artificial Intelligence (AI) and Automation