Automation Engineering

ACADEMIC SKILLS

AA SPEAKING AND LISTENING
AA1 Utilize effective verbal and non-verbal communication skills
AA2 Participate in conversation, discussion, and group presentations
AA3 Communicate and follow directions/procedures
AA4 Communicate effectively with customers and co-workers

AB READING AND WRITING
AB1 Locate and interpret written information
AB2 Read and interpret workplace documents
AB3 Identify relevant details, facts, and specifications
AB4 Record information accurately and completely
AB5 Demonstrate competence in organizing, writing, and editing using correct vocabulary, spelling, grammar, and punctuation
AB6 Demonstrate the ability to write clearly and concisely using industry specific terminology

AC CRITICAL THINKING AND PROBLEM SOLVING
AC1 Utilize critical-thinking skills to determine best options/outcomes (e.g., analyze reliable/unreliable sources of information, use previous experiences, implement crisis management, develop contingency planning)
AC2 Utilize innovation and problem-solving skills to arrive at the best solution for current situation
AC3 Implement effective decision-making skills

AD MATHEMATICS
AD1 Perform basic and higher level math operations (e.g., addition, subtraction, multiplication, division, decimals, fractions, units of conversion, averaging, percentage, proportion, ratios)
AD2 Solve problems using measurement skills (e.g., distance, weight, area, volume)
AD3 Make reasonable estimates
AD4 Use tables, graphs, diagrams, and charts to obtain or convey information
AD5 Use deductive reasoning and problem-solving in mathematics

AE FINANCIAL LITERACY

AE1 Locate, evaluate, and apply personal financial information
AE2 Identify the components of a budget and how one is created
AE3 Set personal financial goals and develop a plan for achieving them
AE4 Use financial services effectively
AE5 Demonstrate ability to meet financial obligations

AF INTERNET USE AND SECURITY

AF1 Recognize the potential risks associated with Internet use
AF2 Identify and apply Internet security practices (e.g., password security, login, logout, log off, lock computer)
AF3 Practice safe, legal, and responsible use of technology in the workplace

AG INFORMATION TECHNOLOGY

AG1 Use technology appropriately to enhance professional presentations
AG2 Demonstrate effective and appropriate use of social media
AG3 Identify ways social media can be used as marketing, advertising, and data gathering tools

AH TELECOMMUNICATIONS

AH1 Select and use appropriate devices, services, and applications to complete workplace tasks
AH2 Demonstrate appropriate etiquette when using e-communications (e.g., cell phone, e-mail, personal digital assistants, online meetings, conference calls)
EMPLOYABILITY SKILLS

EA POSITIVE WORK ETHIC

EA1 Demonstrate enthusiasm and confidence about work and learning new tasks
EA2 Demonstrate consistent and punctual attendance
EA3 Demonstrate initiative in assuming tasks
EA4 Exhibit dependability in the workplace
EA5 Take and provide direction in the workplace
EA6 Accept responsibility for personal decisions and actions

EB INTEGRITY

EB1 Abide by workplace policies and procedures
EB2 Demonstrate honesty and reliability
EB3 Demonstrate ethical characteristics and behaviors
EB4 Maintain confidentiality and integrity of sensitive company information
EB5 Demonstrate loyalty to the company

EC SELF-REPRESENTATION

EC1 Demonstrate appropriate dress and hygiene in the workplace
EC2 Use language and manners suitable for the workplace
EC3 Demonstrate polite and respectful behavior toward others
EC4 Demonstrate personal accountability in the workplace
EC5 Demonstrate pride in work

ED TIME, TASK, AND RESOURCE MANAGEMENT

ED1 Plan and follow a work schedule
ED2 Work with minimal supervision
ED3 Work within budgetary constraints
ED4 Demonstrate ability to stay on task to produce high quality deliverables on time
EE DIVERSITY AWARENESS

EE1 Recognize diversity, discrimination, harassment, and equity

EE2 Work well with all customers and co-worker

EE3 Explain the benefits of diversity within the workplace

EE4 Explain the importance of respect for feelings, values, and beliefs of others

EE5 Identify strategies to bridge cultural/generational differences and use differing perspectives to increase overall quality of work

EE6 Illustrate techniques for eliminating gender bias and stereotyping in the workplace

EE7 Identify ways tasks can be structured to accommodate the diverse needs of workers

EE8 Recognize the challenges and advantages of a global workforce

EF TEAMWORK

EF1 Recognize the characteristics of a team environment and conventional workplace

EF2 Contribute to the success of the team

EF3 Demonstrate effective team skills and evaluate their importance in the workplace (e.g., setting goals, listening, following directions, questioning, dividing work)

EG CREATIVITY AND RESOURCEFULNESS

EG1 Contribute new ideas

EG2 Stimulate ideas by posing questions

EG3 Value varying ideas and opinions

EG4 Locate and verify information

EH CONFLICT RESOLUTION

EH1 Identify conflict resolution skills to enhance productivity and improve workplace relationships

EH2 Implement conflict resolution strategies and problem-solving skills

EH3 Explain the use of documentation and its role as a component of conflict resolution

EI CUSTOMER/CLIENT SERVICE

EI1 Recognize the importance of and demonstrate how to properly acknowledge customers/clients

EI2 Identify and address needs of customers/clients
EI3 Provide helpful, courteous, and knowledgeable service

EI4 Identify appropriate channels of communication with customers/clients (e.g., phone call, face-to-face, e-mail, website)

EI5 Identify techniques to seek and use customer/client feedback to improve company services

EI6 Recognize the relationship between customer/client satisfaction and company success

EJ ORGANIZATIONS, SYSTEMS, AND CLIMATES

EJ1 Define profit and evaluate the cost of conducting business

EJ2 Identify "big picture" issues in conducting business

EJ3 Identify role in fulfilling the mission of the workplace

EJ4 Identify the rights of workers (e.g., adult and child labor laws and other equal employment opportunity laws)

EJ5 Recognize the chain of command, organizational flow chart system, and hierarchy of management within an organization

EK JOB ACQUISITION AND ADVANCEMENT

EK1 Recognize the importance of maintaining a job and pursuing a career

EK2 Define jobs associated with a specific career path or profession

EK3 Identify and seek various job opportunities (e.g., volunteerism, internships, co-op, part-time/full-time employment)

EK4 Prepare a resume, letter of application, and job application

EK5 Prepare for a job interview (e.g., research company, highlight personal strengths, prepare questions, set-up a mock interview, dress appropriately)

EK6 Participate in a job interview

EK7 Explain the proper procedure for leaving a job

EL LIFELONG LEARNING

EL1 Acquire current and emerging industry-related information

EL2 Demonstrate commitment to learning as a life-long process and recognize learning opportunities

EL3 Seek and capitalize on self-improvement opportunities

EL4 Discuss the importance of flexible career planning and career self-management
EL5 Employ leadership skills to achieve workplace objectives (e.g., personal vision, adaptability, change, shared vision)

EL6 Recognize the importance of job performance evaluation and coaching as it relates to career advancement

EL7 Accept and provide constructive criticism

EL8 Describe the impact of the global economy on jobs and careers

EM JOB SPECIFIC TECHNOLOGIES

EM1 Identify the value of new technologies and their impact on driving continuous change and the need for life-long learning

EM2 Research and identify emerging technologies for specific careers

EM3 Select appropriate technological resources to accomplish work

EN HEALTH AND SAFETY

EN1 Assume responsibility for safety of self and others

EN2 Follow safety guidelines in the workplace

EN3 Manage personal health and wellness
OCCUPATIONAL SKILLS

OA GENERAL LAB SAFETY RULES AND PROCEDURES

OA1 Describe general shop safety rules and procedures

OA2 Demonstrate knowledge of OSHA and its role in workplace safety

OA3 Comply with the required use of personal protection equipment (PPE) (i.e., safety glasses, ear protection, gloves, shoes) during lab/shop activities

OA4 Utilize safe procedures for handling of tools and equipment

OA5 Operate lab equipment according to safety guidelines

OA6 Identify and use proper lifting procedures and proper use of support equipment

OA7 Utilize proper ventilation procedures for working within the lab/shop area

OA8 Identify marked safety areas and colors

OA9 Identify the location and the types of fire extinguishers and other fire safety equipment, as well as, demonstrating the procedures for usage

OA10 Identify the location and use of eye wash stations

OA11 Identify the location of the posted evacuation routes

OA12 Identify and wear appropriate clothing for lab/shop activities

OA13 Secure hair and jewelry for lab/shop activities

OA14 Demonstrate knowledge of the safety aspects of low and high voltage circuits

OA15 Locate and interpret material safety data sheets (MSDS)

OA16 Perform housekeeping duties

OA17 Follow verbal instructions to complete work assignments

OA18 Follow written instructions to complete work assignments

OA19 Demonstrate ergonomically safe use of lab equipment, furniture and materials

OB HAND TOOLS

OB1 Identify hand tools and their appropriate usage

OB2 Demonstrate the proper techniques when using hand tools

OB3 Demonstrate safe handling and use of appropriate tools
OB4 Demonstrate proper cleaning, storage and maintenance of tools

OC POWER TOOLS AND EQUIPMENT

OC1 Identify power tools/equipment (e.g., band saw, drill press, table saw, sanders, portable power tools) and their appropriate usage

OC2 Demonstrate safe and proper techniques when using power tools and equipment

OC3 Demonstrate proper cleaning, storage and maintenance of power tools and equipment

OC4 Choose correct machining processes(s) based on the given/produced design

OD HISTORY OF STEM

OD1 Define Science, Technology, Engineering and Mathematics (STEM) and their relationship to each other

OD2 Identify engineering & technology achievements (e.g., space race, computer technology, aqua ducts, skyscrapers, bridges, subways, airports) throughout history

OD3 Identify famous inventors (e.g., Edison, Tesla, Bell, da Vinci, Washington Carver, Ford) and their achievements throughout history

OD4 Research how historical period and regional style have influenced engineering design

OD5 Investigate the evolution of a product

OD6 Describe the product life cycle

OD7 Describe how your design effects the environment both in a positive and negative way

OE CAREERS IN STEM

OE1 Investigate STEM careers, training, professional organizations and associated opportunities

OE2 Describe the difference between Engineering and Engineering Technology disciplines and job functions

OE3 Explore career opportunities and list the educational requirements for several STEM fields of interest

OE4 Research STEM Fields including non-traditional career paths to understand workload, education, job outlook and salary

OE5 Research STEM education and its role in workforce development

OE6 Identify top KY occupations as they relate to industry sectors

OE7 Utilize KCEWS Future Skills Report to determine future workforce demand in STEM fields
OE8 Research the pros/cons of STEM careers and what their impact is on the Kentucky workforce and on job transitions

OE9 Investigate state and national professional organizations (i.e., KSPE, SAME, NCSEA, SME, NAM, NSPE, ASCE, ABET, SWE, NSBE, LEED, PMP, SHPE) and their importance to fields of engineering

OF ETHICS IN ENGINEERING

OF1 Identify current professional engineering codes of ethics

OF2 Analyze ethical engineering issues

OF3 Analyze and explain ethical and technical issues contributing to an engineering disaster

OF4 Describe how ethics influences the engineering process

OF5 Describe the negative impacts technology can have on the environment

OF6 Connect with Engineering and Engineering Technology professionals in your community to discuss engineering ethics

OF7 Identify various standards organizations (i.e., OSHA, EPA, ACS) and their importance in fields of engineering

OG ENGINEERING DESIGN PROCESS

OG1 Identify several design processes and evaluate pros/cons of each

OG2 Explain how a design process is a systematic, iterative problem-solving method that produces solutions to meet human needs and wants

OG3 Identify the activities that occur during each phase of a design process

OG4 Specify criteria and identify constraints when defining a problem and determine the most appropriate solution considering time, material, cost and regulations

OG5 Apply the steps of a design process to solve a variety of design problems

OG6 Describe how social, environmental, legal and financial constraints influence a design process

OG7 Utilize conceptual, mathematical and physical models to evaluate design solutions

OG8 Incorporate computer technology to assist in organizing and analyzing data used during a design process

OG9 Document various design process solutions and communicate to the intended audience

OG10 Utilize a cost analysis tool during the design process

OG11 Identify and implement codes and specifications (i.e., AASHTO, IBC, RBC, AISC, ACI, PCI, AISI, NDS, TMS, ASTM, OSHA, ADA, LEED, ASHRE) based on the intended design solution
OG12 Adapt and change as problems arise in the design process
OG13 Demonstrate best practices when working through the design process on a team
OG14 Incorporate ergonomics within each design solution

OH UTILIZE THE INNOVATION PORTAL

OH1 Present and justify the problem (Element A)
OH2 Document and analyze prior solution(s) attempt (Element B)
OH3 Present and justify a solution design requirements (Element C)
OH4 Design concept generation, analysis and selection (Element D)
OH5 Apply STEM principles and practices (Element E)
OH6 Consider design viability (Element F)
OH7 Construct of a testable prototype (Element G)
OH8 Develop a prototype testing and data collection plan (Element H)
OH9 Test data collection and analysis (Element I)
OH10 Document external evaluations (Element J)
OH11 Reflect on the design process (Element K)
OH12 Present the designer’s recommendations (Element L)
OH13 Present the project portfolio (a holistic grade based on elements A-L) (Element M)
OH14 Write like an engineer (a holistic grade based on elements A-L) (Element N)

OI FREEHAND TECHNICAL SKETCHING TECHNIQUES

OI1 Develop design ideas using freehand sketching
OI2 Identify the six primary orthographic views
OI3 Create pictorial and multi-view sketches
OI4 Create rough, refined and presentation sketches
OI5 Utilize the alphabet of lines (i.e., styles and weights)
OI6 Legibly annotate sketches
OI7 Interpret common symbols and terminology
OJ MEASURING AND SCALING TECHNIQUES

OJ1 Identify industry standard units of measure
OJ2 Convert between industry standard units of measure
OJ3 Determine and apply the appropriate engineering and metric scales
OJ4 Determine and apply the equivalence between fractions and decimals
OJ5 Demonstrate proper use of precision measuring tools
OJ6 Make precision measurements to the degree of accuracy required by the specifications using appropriate instruments
OJ7 Measure effectively and accurately to accomplish engineering-related tasks
OJ8 Utilize geometric dimensioning and tolerancing to solve engineering problems

OK ENGINEERING DOCUMENTATION AND COMMUNICATION PROCEDURES

OK1 Demonstrate record keeping procedures and communication in engineering utilizing an engineering notebook
OK2 Identify the importance of proprietary documentation in engineering
OK3 Utilize project management timelines in a Gantt chart
OK4 Present design solutions in a clear and concise manner
OK5 Demonstrate the conventions of technical writing to communicate design solutions
OK6 Document object size, area, mass, volume and density
OK7 Utilize appropriate digital file management techniques
OK8 Utilize appropriate presentation techniques
OK9 Identify basic components of a computer system and their function
OK10 Use spreadsheet software to analyze and present data
OK11 Communicate project results through a technical report
OK12 Create a portfolio containing all notes, work and projects documenting the course
OK13 Communicate to a non-technical audience your project solution

OL COMPUTER AIDED DESIGN (CAD) SYSTEM

OL1 Identify various 2D and 3D CAD software
OL2 Interpret basic elements of a technical drawing (i.e., title block information, dimensions, line types)
OL3 Describe and construct various types of CAD drawings (i.e., part, assembly, drawing files)
OL4 Construct drawings utilizing metric and customary (i.e., SAE and Imperial) measurement systems
OL5 Arrange dimensions and annotations using appropriate standards (i.e., ANSI and ISO)
OL6 Read technical drawings identifying and understand the dimensional tolerances and limits
OL7 Construct exploded assembly drawings with part lists and balloons
OL8 Create rendered drawings
OL9 Utilize a CAD modeling system to perform a physical property analysis (i.e., quantities, take offs, area, mass, weight) for a part or assembly
OL10 Calculate costs and physical requirements impacted by product physical properties of a product
OL11 Use appropriate technology (i.e., camera, video) to allow a walkthrough of a project

OM MODELING TECHNIQUES
OM1 Identify the areas of modeling (i.e., physical, conceptual, mathematical)
OM2 Create various mock-ups, scale models and working prototypes based on CAD drawings
OM3 Evaluate various mock-ups, scale models and working prototypes using a design process
OM4 Design simulations to model intended design outcomes
OM5 Create virtual walk throughs and fly overs to model intended design outcomes
OM6 Describe the difference between additive and subtractive modeling

ON RAPID PROTOTYPING TECHNOLOGY
ON1 Explain how technology shifts throughout history have made rapid prototyping possible
ON2 Explain current and emerging rapid prototyping applications in a variety of industries
ON3 Describe the advantages and limitations of each rapid prototyping technology
ON4 Evaluate real-life scenarios and recommend the appropriate use of rapid prototyping technology
ON5 Identify opportunities to apply rapid prototyping technology for time and cost savings
ON6 Discuss the economic implications of rapid prototyping including its impact on startup businesses and supply chains
ON7 Determine appropriate rapid prototyping process to solve various design problems
ON8 Determine appropriate rapid prototyping material(s) to solve various engineering related problems

ON9 Demonstrate an understanding of rapid prototyping using a 3D printer to solve engineering related problems

ON10 Demonstrate an understanding of rapid prototyping using a laser engraver to solve engineering related problems

ON11 Demonstrate an understanding of rapid prototyping using a CNC equipment to solve engineering related problems

ON12 Demonstrate an understanding of rapid prototyping using breadboards and microcontrollers to solve engineering related problems

OO UNMANNED VEHICULAR SYSTEMS

OO1 Design, build and test an intelligent vehicle that will meet criteria determined by students

OO2 Research and explain the role and future of autonomous or unmanned aircraft

OP BASIC ELECTRICITY

OP1 Measure circuit values (i.e., voltage, resistance, current) using a digital Multimeter

OP2 Construct and calculate voltage, resistance and current of series and parallel circuits using Ohm’s law

OP3 Demonstrate bread boarding through various projects

OP4 Demonstrate basic programming skills related to electronics

OP5 Interpret basic electrical schematics

OP6 Compare and contrast the behavior of electrical circuits with parallel and series circuit designs

OP7 Demonstrate soldering through various projects

OP8 Determine resistor values based on color code

OP9 Understand the basic function (i.e., SPST, DPDT, push button, dip, rotary) of switches

OQ INTERMEDIATE CIRCUITS AND LAWS OF ELECTRICITY

OQ1 Understand the advantage and disadvantages of AC and DC electrical systems and their applications

OR SIGNALS AND TIMERS

OR1 Understand the differences of analog and digital signals

OS PLD'S, STATE MACHINES, AND MICROCONTROLLERS
OS1 Design, create and implement Programmable Logic Devices (PLD) in digital circuits

OT MANUFACTURING ENGINEERING

OT1 Define manufacturing engineering

OT2 Research fields of engineering related to manufacturing

OT3 Describe the history of manufacturing and why/how it has evolved

OT4 Describe common manufacturing processes (e.g., molding, casting, extruding, machining, joining)

OT5 Identify how manufacturing processes can be used to produce a product

OU MANUFACTURING TECHNIQUES

OU1 Describe common manufacturing techniques and processes

OU2 Interpret how advances in techniques and technology impact modern manufacturing systems

OU3 Identify common manufacturing techniques and practices (e.g., Kaizen, Flexible Manufacturing Systems, lean manufacturing, six sigma)

OU4 Compare and contrast the advantages and disadvantages of common manufacturing techniques and processes

OU5 Utilize project management techniques to meet deadlines and resolve team conflict

OV MANUFACTURING SYSTEMS

OV1 Describe common manufacturing systems (e.g., Computer Numerical Control (CNC), Automated Guided Vehicle)

OV2 Design a system process that creates a part efficiently and optimize the process sequence for accuracy and repeatability

OV3 Produce a frequency distribution to describe experimental results and create a histogram to communicate these results

OV4 Utilize descriptive statistics to produce an abstraction from data to communicate meaningful data

OV5 Describe how input and output devices are part of an open and closed loop system

OV6 Relate sensor inputs to the environment being measured

OV7 Operate output devices to perform a function

OV8 Utilize a flowchart or pseudocode to outline a process and perform a task

OV9 Create a control program to accomplish an objective using various inputs and outputs
OV10 Compare and contrast common computer integrated manufacturing systems

OV11 Understand how the individual components of a flexible manufacturing system are interrelated

OV12 Identify potential safety issues with a Computer Integrated Manufacturing (CIM) system

OV13 Outline a process for a manufacturing process using standard process symbols

OV14 Design and construct a system to manufacture a part

OV15 Evaluate the effectiveness of a manufacturing system to accomplish a goal

OV16 Integrate conveyors, assembly lines and various manufacturing parts into a complete system

OV17 Develop a time study based on the manufacturing system developed

OW EFFICIENT MANUFACTURING

OW1 Compare the efficiencies of multiple manufacturing systems

OW2 Identify fixed and variable costs of manufacturing a product

OW3 Classify typical costs of manufacturing a given product

OW4 Calculate costs of a manufacturing system

OW5 Describe how mass and material properties impact manufacturing decisions

OX COMPUTER NUMERICAL CONTROL (CNC) MANUFACTURING

OX1 Identify different examples of common CNC machines

OX2 Describe parts and functions of common machines used in manufacturing

OX3 Calculate speed and feed rates for milling machine settings

OX4 Describe a procedure to operate a milling machine

OX5 Analyze part geometry to select appropriate cutting tools and fixturing devices needed to create the part using a CNC machine

OX6 Utilize G&M codes and a simple NC part program to manufacture a product

OX7 Design a manufactured product using a Computer Aided Manufacturing (CAM) program and machine code

OX8 Test and analyze machine code accuracy using simulation software

OY SIMPLE AND COMPOUND MACHINES

OY1 Distinguish between the six simple machines, their attributes and components
OY2 Measure forces and distances related to simple machines
OY3 Calculate mechanical advantages of all simple machines
OY4 Design, construct and test various simple machines
OY5 Design, construct and test a compound machine
OY6 Design, construct and calculate various gear ratios
OY7 Define, identify and demonstrate forms of potential and kinetic energy

OZ STATICS
OZ1 Draw complete free-body diagrams of static systems
OZ2 Write appropriate equilibrium equations including the support reactions on a structure
OZ3 Determine the resultant forces of a truss system
OZ4 Apply the concepts of equilibrium to trusses
OZ5 Calculate compression and tension forces on individual members in a truss system
OZ6 Calculate moments, centers of mass and forces for particular structures
OZ7 Calculate the moment of inertia of a structural member
OZ8 Calculate the deflection of a structural member
OZ9 Design and destructively test a truss to analyze calculated predictions of maximum load and efficiency

OAA MATERIAL PROPERTIES
OAA1 Describe physical and mechanical properties of different materials (e.g., metals, ceramics, polymers and plastics, semiconductors, wood, composites)
OAA2 Compare and contrast use of a variety of a materials for a given application

OAB THERMODYNAMICS
OAB1 Describe convection, conduction and radiation as they apply to thermal energy transfer
OAB2 Calculate the rate at which energy is transferred through materials applying different R-values

OAC DYNAMICS
OAC1 Describe Newton’s three laws of motion
OAC2 Calculate velocity and acceleration for a body in motion in one and two dimensions using kinematic equations

OAC3 Translate linear motion variables, relationships and equations to rotational motion

OAC4 Describe the impact of torque on a rotating system

OAC5 Calculate torque given a force and a point of application

OAC6 Identify and explain basic components (e.g., links, joints, slots, degrees of freedom) of linkage systems

OAC7 Design a linkage system that completes a specified task by converting rotational motion to linear motion or vice versa

OAD FLUID MECHANICS

OAD1 Identify the advantages of hydraulic and pneumatic systems

OAD2 Understand the differences between hydrodynamic and hydrostatic systems

OAD3 Identify and explain basic components and functions (e.g., hydraulic and pneumatic power systems) of fluid power devices

OAD4 Understand how pressure and temperature effect fluid systems

OAD5 Design, create and test a hydraulic device and a pneumatic device

OAD6 Calculate flow rate, flow velocity, power and mechanical advantage in a fluid power system

OAD7 Utilize a flow meter to acquire and analyze flow rate and pressure data for a fluid power system

OAD8 Identify and explain basic components and functions of water pumps and hydroelectric systems

OAE MACHINE DESIGN

OAE1 Identify and explain the advantages and disadvantages of different types of gears

OAE2 Calculate gear ratios and mechanical advantage for gear trains

OAE3 Calculate mechanical advantage of screws and bolts using thread, pitch and diameter

OAE4 Identify different machine elements (e.g., cam mechanisms, linkages, belt drives) in motion and their components

OAE5 Identify machine elements (e.g., springs, flywheels, clutches and brakes) that absorb and store energy

OAE6 Understand and utilize ISO Drawing standards for machine components and assembly

OAE7 Design, build and test a machine utilizing multiple machine elements and components that also meets safety requirements
OAE8 Calculate work and power

OAF ROBOTICS ENGINEERING

OAF1 Define robotic engineering
OAF2 Define common types of robots
OAF3 Define work envelope
OAF4 Describe the development and evolution of robot technology and application
OAF5 Research careers related to robotic engineering and their education requirements
OAF6 Construct basic robotic systems using technical drawings
OAF7 Identify various inputs and outputs used in robotic systems
OAF8 Describe accuracy and repeatability in the field of robotics
OAF9 Apply basic physics concepts (e.g., velocity, speed, force, distance, torque, fluid power) to solve various design problems
OAF10 Demonstrate an understanding of robotics, its history, applications, evolution and future
OAF11 Demonstrate an understanding of the impact of robotics on the manufacturing process
OAF12 Demonstrate an understanding of 3D modeling concepts as it relates to robotics

OAG DRIVE TRAIN AND STRUCTURE

OAG1 Construct and evaluate advantages and disadvantages (i.e., tank, holonomic, mecanum, Omni swerve) of drive systems
OAG2 Design and build a working model of a robot
OAG3 Construct and evaluate advantages and disadvantages of different structures/chassis
OAG4 Understand basic electrical and magnetic properties and their application to various types of electric motors and servos

OAH ROBOTIC SUB-SYSTEMS

OAH1 Distinguish between digital and analog components
OAH2 Predict robot motion resulting from movement of an actuator
OAH3 Demonstrate an understanding of technologies for communication (i.e., handshaking) with and among robotic systems
OAH4 Describe the operation and use of various forms of electrical motors in robotic assemblies
OAI ROBOTIC PROGRAMMING

OAI1 Apply basic programming to robotic systems to solve various engineering related problems

OAI2 Describe Artificial Intelligence (AI) and Automation

OAI3 Describe the approaches, challenges and problem-solving methodologies involved with integrating artificial intelligence into robotic systems

OAI4 Apply advanced programming skills (e.g., loops-open vs. closed, functions, variables, if/else)

OAI5 Design, build, program and configure a robot system to perform predefined tasks (i.e., minimum 2 platforms)