
DRAT - September 2018 | Page 1 

Kentucky Academic Standards 
for  

Computer Science
Kindergarten through Grade 12

October 2018
v.1.2



 October 2018 | Page 2 

Table of Contents 

Table of Contents 2 
Introduction 3 

Background 3 
Kentucky’s Vision for Students 3 
Legal Basis 4 

Writers’ Vision Statement 5 
Design Considerations 5 
What is Computer Science Education? 5 

Technology Standards vs. Computer Science Standards 6 
Consulted Partners 7 

Standards Use and Development 7 
The Kentucky Academic Standards (KAS) are Standards, not Curriculum 7 

Translating the Standards into Curriculum 8 
Organization of the Standards 8 
Standards Structure and Identifiers 8 

Grade Bands and Grade Level Considerations 9 
Supplementary Materials to the Standards 10 

Kentucky Academic Standards (KAS) for Computer Science 12 
Elementary (K-5) Computer Science Standards 12 
Middle School (6-8) Computer Science Standards 23 
High School (9-12) Computer Science 30 

References 41 
Appendix A: Glossary of Terms 42 
Appendix B: Writing and Review Committees 43 
Appendix C: Standards Progression Chart 45 



 October 2018 | Page 3 

Introduction 

Background 
The United States currently has approximately 494,000 unfilled computing jobs, but only 
43,000 computer science graduates to fill those jobs (Promoting Computer Science, 2017). As 
the need for computer science education increases, Kentucky recognizes the benefit of high 
quality standards to help all students discover how computing and technology shape the world 
around them. Therefore, the Kentucky Department of Education (KDE) engaged with state and 
local partners to develop the Kentucky Academic Standards for Computer Science which focus 
on providing students with opportunities to develop fundamental skills essential to all college 
and career paths; whereby, stimulating Kentucky’s economy and workforce.  

Kentucky’s Vision for Students 
Knowledge about the design and implementation of computer programs to solve problems is 
not only fundamental to the study of computer science, but also develops skills and 
dispositions that directly align with the Kentucky Board of Education’s (KBE) vision that each 
and every student is empowered and equipped to pursue a successful future. To equip and 
empower students, the following capacity and goal statements frame instructional programs in 
Kentucky schools. The statements and goals were established by the Kentucky Education 
Reform Act (KERA) of 1990, as found in Kentucky Revised Statute (KRS) 158.645 and KRS 
158.6451. All students shall have the opportunity to acquire the following capacities and 
learning goals: 

● Communication skills necessary to function in a complex and changing civilization;
● Knowledge to make economic, social and political choices;
● Understanding of governmental processes as they affect the community, the state and

the nation;
● Sufficient self-knowledge and knowledge of their mental health and physical wellness;
● Sufficient grounding in the arts to enable each student to appreciate their cultural and

historical heritage;
● Sufficient preparation to choose and pursue their life’s work intelligently; and
● Skills to enable students to compete favorably with students in other states and other

parts of the world

Furthermore, schools shall: 
● Expect a high level of achievement from all students.
● Develop their students’ ability to:

○ Use basic communication and mathematics skills for purposes and situations
they will encounter throughout their lives;

○ Apply core concepts and principles from mathematics, the sciences, the arts,
the humanities, social studies, English/language arts, health, practical living,
including physical education, to situations they will encounter throughout their
lives;



 October 2018 | Page 4 

○ Become self-sufficient individuals;
○ Become responsible members of a family, work group or community as well as

an effective participant in community service;
○ Think and solve problems in school situations and in a variety of situations they

will encounter in life;
○ Connect and integrate experiences and new knowledge from all subject matter

fields with what students have previously learned and build on past learning
experiences to acquire new information through various media sources;

○ Express their creative talents and interests in visual arts, music, dance, and
dramatic arts.

● Increase student attendance rates.
● Reduce dropout and retention rates.
● Reduce physical and mental health barriers to learning, and
● Be measured on the proportion of students who make a successful transition to work,

postsecondary education and the military.

Kentucky law establishes minimum requirements for all students to earn a diploma. However, 
elective courses are offered based on decisions of local districts and schools. Schools also 
offered Computer Science courses in the past through Career and Technical Education (CTE) 
Pathways. 

To ensure legal requirements of courses are met, the KDE encourages schools to use the 
Model Curriculum Framework to inform development of curricula related to these courses. The 
Model Curriculum Framework encourages putting the student at the center of planning to 
ensure that 

…the goal of such a curriculum is to produce students that are ethical citizens in a 
democratic global society and to help them become self-sufficient individuals who are 
prepared to succeed in an ever-changing and diverse world. Design and 
implementation requires professionals to accommodate the needs of each student and 
focus on supporting the development of the whole child so that all students have 
equitable access to opportunities and support for maximum academic, emotional, social 
and physical development. 

(Model Curriculum Framework, page 19) 

Legal Basis 
The following Kentucky Revised Statutes (KRS) and Kentucky Administrative Regulations 
(KAR) provide a legal basis for this publication:  

KRS 156:160 Promulgation of administrative regulations by the Kentucky Board of 
Education  

With the advice of the Local Superintendents Advisory Council (LSAC), the KBE shall 
promulgate administrative regulations establishing standards that public school districts 



 October 2018 | Page 5 

shall meet in student, program, service and operational performance. These regulations 
shall comply with the expected outcomes for students and schools set forth in KRS 
158:6451. 

Writers’ Vision Statement 
The writing team envisioned standards that would afford students the opportunity to engage in 
critical thinking, computational thinking and problem-solving through computer science. The 
writing team wanted standards that would:  

● initiate cross-curricular connections to enhance the understanding of computer science
skills and concepts;

● establish a continuum of computer science competencies K-12;
● provide opportunities for ALL students  to engage in computer science experiences and
● advanced coursework to prepare them for future success; and
● prepare students to address a critical workforce need related to computer science

knowledge and skills.

Design Considerations 
The writers designed a single set of standards to frame learning opportunities in such a way so 
as to allow local districts the flexibility to choose the curricular design that best meets the needs 
of students. The writers chose to organize the standards into five broad concept areas: 
networks and the internet, data and analysis, algorithms and programming, impacts of 
computing and computing systems. Standards in each area were written as performance 
expectations to depict what students must do to demonstrate proficiency.  

What is Computer Science Education? 
Kentucky defines computer science as an academic discipline encompassing the study of 
computers and algorithmic processes to include principles, hardware and software designs, 
applications, networks and the impact on society. The computer science standards focusing on 
this academic discipline outlined in this document provide foundational opportunities essential 
to the preparation of students for post-secondary education and careers. 

The infusion of technology, computers and digital experiences in our everyday life blurred the 
lines in terms of how computer science is defined. The K-12 Computer Science Framework 
recognizes four common terms that have a relationship with computer science education, but 
do not define it in isolation due to differences in purpose and meaning. 

http://www.lrc.ky.gov/Statutes/statute.aspx?id=3552
http://www.lrc.ky.gov/Statutes/statute.aspx?id=3552
http://www.lrc.ky.gov/Statutes/statute.aspx?id=3552
https://k12cs.org/defining-computer-science/


 October 2018 | Page 6 

Computer science often is confused with the everyday use of computers and 
computer applications, such as learning how to access the Internet and use 
digital presentation software. Parents, teachers, students, and local and state 
administrators share this confusion. The K–12 Computer Science Framework 
clarifies not only what computer science is but also what students should know 
and be able to do in computer science from kindergarten to 12th grade. 
Computer science builds on computer literacy, educational technology, digital 
citizenship, and information technology. Their differences and relationship with 
computer science are described below. 

● Computer literacy (or digital literacy) refers to the general use of
computers and programs (i.e., computer applications) such as
productivity software. Examples include performing an Internet search
and creating a digital presentation.

● Educational technology applies computer literacy to school subjects.
For example, students in an English class can use a web-based
application to collaboratively create, edit, and store an essay online.

● Digital citizenship refers to the appropriate and responsible use of
technology, such as choosing an appropriate password and keeping it
secure.
Information technology often overlaps with computer science but is
mainly focused on industrial applications of computer science, such as
installing and operating software rather than creating it. Information
technology professionals often have a background in computer
science.

These aspects of computing are distinguished from computer science because they focus on 
using computer technologies rather than understanding why they work and how to create those 
technologies. Knowing why and how computers work (i.e., computer science), provides the 
basis for a deep understanding of computer use and the relevant rights, responsibilities and 
applications (K-12 Computer Science Framework Steering Committee, 2016). 

Technology Standards vs. Computer Science Standards 
Kentucky officially recognized Technology Academic Standards in 2008. While these 
technology standards complement the Kentucky Academic Standards for Computer Science, 
the resulting competencies are substantially different. The technology standards are broad and 
should lead students towards competencies that highlight learning with technology. Such as 
digital literacy skills demonstrating the responsible use of appropriate technology to 
communicate, solve problems, access, manage, integrate, evaluate and create information to 
improve learning in all subject areas.  

The Kentucky Academic Standards for Technology, based on the International Society for 
Technology in Education (ISTE) Student Standards, provide a framework for integrating 
technology into all content areas and reflect the basic digital skills required for each student to 
be competitive in the global economy. Additionally, “demonstrating performance-based 

https://education.ky.gov/curriculum/standards/kyacadstand/Pages/contentareasstandards.aspx
https://www.iste.org/


 October 2018 | Page 7 

competency in technology” is included as a minimum graduation requirement in Kentucky 
public schools. For students to attain the required technology competencies, it is essential they 
have access to technology during the school day at all grade levels. Instruction should provide 
opportunities for students to gain and demonstrate technology skills that build throughout their 
K-12 educational careers.

Consulted Partners 
Through the Kentucky Academic Standards for Computer Science development process many 
partners were consulted. The following list represents partners who assisted in the drafting of 
these standards provided valuable research and resources:  

● Computer Science Teachers Association (2017). CSTA K-12 Computer Science
Standards, Revised 2017. Retrieved from http://www.csteachers.org/standards.

● K–12 Computer Science Framework. (2016). Retrieved from http://www.k12cs.org.
● Southern Regional Education Board. (2016). Bridging the computer science education

gap. Retrieved from https://www.sreb.org/publication/bridging-computer-science-
education-gap

● Teach Computer Science. (n.d.). Retrieved from
https://studio.code.org/courses?view=teacher.

Standards Use and Development 

The Kentucky Academic Standards (KAS) are Standards, not 
Curriculum
The Kentucky Academic Standards for Computer Science outline the minimum content 
standards Kentucky students should learn in elective or integrated courses. The standards 
address what is to be learned, but do not address how learning experiences are to be designed 
or what resources should be used. 

A standard represents a goal or outcome of an educational program. The standards do not 
dictate the design of a lesson plan or how units should be organized. The standards establish 
what students should know and be able to do at the conclusion of a course. The instructional 
program should emphasize the development of students' abilities to acquire and apply the 
standards. The curriculum must assure that appropriate accommodations are made for diverse 
populations of students found within Kentucky schools. 

These standards are not a set of instructional or assessment tasks; rather, they are statements 
of what students should be able to do after instruction. Decisions on how best to help students 
meet these program goals are left to local school districts and teachers. 

http://education.ky.gov/curriculum/hsgradreq/Pages/default.aspx
http://www.csteachers.org/standards
http://www.k12cs.org/
https://studio.code.org/courses?view=teacher


 October 2018 | Page 8 

Translating the Standards into Curriculum 
The KDE does not require specific curriculum or strategies to be used to teach the Kentucky 
Academic Standards (KAS). Local schools and districts choose to meet those minimum 
required standards using a locally adopted curriculum. As educators implement academic 
standards, they, along with community members, must guarantee 21st-century readiness that 
will ensure all learners are transition-ready. To achieve this, Kentucky students need a 
curriculum designed and structured for a rigorous, relevant and personalized learning 
experience, including a wide variety of learning opportunities. The Kentucky Model Curriculum 
Framework serves as a resource to help an instructional supervisor, principal and/or teacher 
leader revisit curriculum planning, offering background information and exercises to generate 
“future-oriented” thinking while suggesting a process for designing and reviewing the local 
curriculum. 

Organization of the Standards 

Standards Structure and Identifiers 
The Kentucky Academic Standards for Computer Science follow a specific structure. 

● Standard Identifier: reflects consistent coding for the identification of a standard
representing the grade (or grade band), the concept area and the numerated standard
number per concept.

● Grade Band: identifies the grade band associated with the standard.
● Concept: categorizes the standards into five concepts (Computing Systems; Networks

and the Internet; Algorithms and Programming; Data and Analysis; and Impacts of
Computing).

● Subconcept: represents the specific ideas within that concept. Subconcept overviews
summarize how learning progresses across multiple grade bands and are used to
develop the progression chart (Appendix C).

● Standard: outlines what students are expected to know or be able to do.
● Description: translates the standard into manageable learning pieces.
● Grade-by-Grade Indicators: provide a comprehensive picture of performance

expectations for each standard in the K-5 grade band and include thorough descriptions
of the exemplary practices and processes.

http://education.ky.gov/curriculum/standards/kyacadstand/Documents/Kentucky%20Academic%20Standards_Final-9%2011%2015.pdf
http://education.ky.gov/curriculum/standards/kyacadstand/Documents/Kentucky%20Academic%20Standards_Final-9%2011%2015.pdf
https://education.ky.gov/curriculum/modcurrframe/Documents/Kentucky%20Model%20Curriculum%20Framework.pdf
https://education.ky.gov/curriculum/modcurrframe/Documents/Kentucky%20Model%20Curriculum%20Framework.pdf


 October 2018 | Page 9 

Standard Identifier (example) 

Grade Bands and Grade Level Considerations 
The Kentucky Academic Standards for Computer Science are organized in specific grade 
bands (K-5, 6-8 and 9-12). This organization enables teachers to create grade level or course-
specific student expectations derived from the standards. Additionally, connections exist 
between standards in different grade bands and demonstrate how one concept builds on 
another to provide vertically aligned learning experiences for students. 

● The Kentucky Academic Standards for Computer Science represent knowledge and
skills that should be modeled through the transition of each grade band (i.e. grade 5,
grade 8 and grade 12). While middle school and high school students generally have
the opportunity to demonstrate the learning of computer science skills and concepts
through dedicated computer science-related courses, students in elementary school
may be more likely to learn computer science skills integrated throughout the curriculum
in all content areas. Therefore, grade-by-grade indicators are ONLY included, per
standard, for kindergarten through grade 5.

● Computer science at the middle school level continues to develop students’
foundational skills (in problem solving, computational and critical thinking) through the
awareness and exploration of computer science-related concepts.

● Computer science at the high school level continues to develop students’ foundational
understanding of computer science in the world through in-depth learning opportunities,
including awareness and exploration activities. Standards marked with a (*) for grades
9-12 represent challenging computer science learning expectations (referred to as
Challenge Standards) for students with aspirations toward careers and postsecondary
studies in computing disciplines.



 October 2018 | Page 10 

Supplementary Materials to the Standards 
The final set of the Kentucky Academic Standards for Computer Science is the result of 
educator involvement and public feedback. Short summaries of each of the appendices are 
listed below. 

Appendix A: Glossary of Terms 
Disciplinary terms are used throughout the Kentucky Academic Standards for Computer 
Science and its supporting materials. This document provides definitions and descriptions of 
these terms. 

Appendix B: Writing and Review Teams 
Background information on the team who wrote the Kentucky Academic Standards for 
Computer Science is included. Additional information includes those who reviewed the 
standards and/or provided feedback. 

Appendix C: Grade Band Progression Chart 
The progression chart represents the K-12 Kentucky Academic Standards for Computer 
Science progressions for ALL students, to include all concept areas and subconcepts.  



 
  DRAFT - September 2018 | Page 11  

  

Elementary (K-5)  
Kentucky Academic Standards for Computer Science



           October 2018 | Page 12 

Kentucky Academic Standards (KAS) for Computer 
Science 

Elementary (K-5) Computer Science Standards 
Concept: Networks and The Internet 

Identifier Standard & Description 

E-NI-01

Understand the basic components of how networks operate to protect physical 
and digital information. 

Students should be able to articulate that usernames and passwords are used to verify 
the identity of a person using a computing device or system. Students should use 
usernames and passwords regularly; be able to show that strong passwords are more 
secure than weak passwords and longer passwords are stronger than short 
passwords; indicate that passwords can be made even stronger when numbers and 
symbols are used as well as letters; and be introduced to the term "complex" as a 
synonym for "strong." 

Subconcept: Network Communication & Organization 

Grade-by-Grade Indicators: 
K - Describe how usernames and passwords protect personal information. 
1 - Demonstrate how to log in and log out of digital device using age appropriate 
usernames and passwords. 
2 - Describe the characteristics of a strong password. 
3 - Explain the effects of password misuse. 
4 - Explain how acceptable use policies help protect physical devices and digital 
information. 
5 - Demonstrate an understanding of digital security (i.e. use strong passwords; use 
usernames; protect personal digital information) 

E-NI-02

Model how information is broken down into smaller pieces (data packets), 
transmitted over various paths (physical and/or wireless), and reassembled at 
the destination 

Computers break down information into smaller pieces called packets, which are sent 
independently and reassembled at the destination. Students should demonstrate their 
understanding of this flow of information by: drawing a model of the way packets are 
transmitted, programming an animation to show how packets are transmitted, or 
demonstrating this through an analog, non-digital activity which has them act it out in 
some way (this can also be referred to as an “unplugged activity”). 

Subconcept: Cybersecurity 



 October 2018 | Page 13 

Identifier Standard & Description 

Grade-by-Grade Indicators: 
K - Not introduced until 4th grade 
1 - Not introduced until 4th grade 
2 - Not introduced until 4th grade 
3 - Not introduced until 4th grade 
4 - Describe how computers break down information. 
5 - Use a model to represent how digital information is sent and received over physical 
or wireless paths. 

Concept: Data and Analysis 

Identifier Standard & Description 

E-DA-01

Appropriately store and modify digital files. 

All information stored and processed by a computing device is referred to as data. 
Data can be images, text documents, audio files, software programs or apps, video 
files, etc. As students use software to complete tasks on a computing device, they 
should demonstrate their understand that they are manipulating data. 

Subconcept: Storage 

Grade-by-Grade Indicators: 
K - Open and close digital files with prompting and support. 
1 - Open, close and save digital files with prompting and support. 
2 - Open, close and save digital files. 
3 - Search, modify and delete digital files with prompting and support. 
4 - Search, modify, and delete digital files. 
5 - Convert digital files. 

E-DA-02

Collect and visually display data using appropriate applications. 

The collection and use of data about the world around them is a routine part of life and 
influences how people live. Students should collect data that they experience in the 
world around them, then organize the data into two or more visualizations. Data 
collection and analysis should be cross-curricular and occur throughout the year. 

Subconcept: Collection, Visualization & Transformation 

Grade-by-Grade Indicators: 
K - Not introduced until 1st Grade. 
1 - Ask questions to collect and visually represent data with prompting and support. 
2 - Collect and visually represent data using one digital format with prompting and 
support. 
3 - Collect and visually represent data in tables or graphical displays using one 
application or digital format. 
4 - Collect data and determine an appropriate application or format to visually display 



 October 2018 | Page 14 

Identifier Standard & Description 

the data. 
5 - Collect and represent data in graphical displays using one or more application to 
determine the benefits of using more than one visual display type. 

E-DA-03

Analyze data for trends and relationships 

Raw data has little meaning on its own. Students should be able to demonstrate 
sorting or grouping of data to provide additional clarity and meaning. Organizing data 
can make interpreting and communicating data to others easier. Data points can be 
clustered by a number of commonalities. Students should demonstrate understanding 
that the same data could be manipulated in different ways to emphasize particular 
aspects or parts of the data set. Raw data should be used to highlight relationships, 
and to determine different cause and effect relationships. Students can also 
demonstrate that data can be used to predict things that would happen in the future. 

Subconcept: Inference & Models 

Grade-by-Grade Indicators: 
K - Use observations to describe patterns in organized data with prompting and 
support. 
1 - Use observations to describe patterns in organized data. 
2 - Use observations to describe patterns that can be predicted in organized data. 
3 - Analyze and interpret data using digital tools. 
4 - Analyze and interpret data to describe patterns using digital tools. 
5 - Represent data in graphical displays and describe cause and effect relationships, 
communicate ideas or predict outcomes. 

Concept: Algorithms and Programming 

Identifier Standard & Description 

E-AP-01

Create, follow, compare and refine algorithms for a task. 

Algorithms (step-by-step instructions) are common in many primary classrooms. Just 
as people use algorithms to complete daily routines, they can program computers to 
use algorithms to complete different tasks. Algorithms are commonly implemented 
using a precise language that computers can interpret. Different algorithms can be 
used to perform the same task. While the end results may be similar, the paths may be 
different. Students should be able to look at different ways to solve the same task and 
decide which would be the best solution. Algorithms can be expressed in non-
computer languages, including natural language, flowcharts, and pseudocode. 

Subconcept: Algorithms 

Grade-by-Grade Indicators: 
K - Use simple algorithms to complete everyday tasks. 
1 - Create and use simple algorithms to complete everyday tasks. 
2 - Create and use simple algorithms using images, text or visual programming blocks 



 October 2018 | Page 15 

Identifier Standard & Description 

to complete everyday tasks. 
3 - Compare two sets of algorithms for the same task to determine the best solution. 
4 - Create and compare two sets of algorithms for the same task to determine the best 
solution. 
5 - Modify a set of algorithms and discuss how multiple paths can lead to the same 
solution. 

E-AP-02

Explore and use variables in a program. 

Information in the real world can be represented in computer programs. Additionally, 
different actions are available for different kinds of information. Students should 
demonstrate the understanding that variables are not just used for numbers; 
they can also hold text, including whole sentences (strings) or logical 
values (true or false). Students should also demonstrate that a variable has a data 
type and is associated with a data storage location. 

Subconcept: Variables 

Grade-by-Grade Indicators: 
K - Describe ways people represent data. 
1 - Explain how numbers are used to represent data. 
2 - Create a simple model to show how a computer stores information using numbers 
or symbols. 
3 - Identify ways variables are used in programs. 
4 - Modify or remix an existing program that uses a variable. 
5 - Create a program that uses a variable. 

E-AP-03

Routinely create programs using a variety of tools to express ideas, address a 
problem or create an artifact, individually and collaboratively. 

Programming is used as a tool to create products that reflect a wide range of interests, 
including to solve a problem, express and idea or create an artifact. People work 
together to plan, create and test programs within a context that is relevant to the 
programmer and those who will use the program. When creating programs, students 
need to have opportunities to work both individually and with peers. For young 
learners, collaboration through programming should be encouraged. Student should 
begin exploring the use of simple sequences and simple loops in Kindergarten and 
progress to using more complex sequences, loops, events, variables and conditionals 
by 5th grade. 

Subconcept: Control 

Grade-by-Grade Indicators: 
K - Routinely create simple programs, independently OR collaboratively. 
1 - Routinely create simple programs, independently AND collaboratively. 
2 - Routinely create simple programs with sequences using a variety of tools, 
independently and collaboratively. 
3 - Routinely create simple programs with sequences or events using a variety of 
tools, independently and collaboratively. 



 October 2018 | Page 16 

Identifier Standard & Description 

4 - Routinely create simple programs with sequences, events or loops routinely using 
a variety of tools, independently and collaboratively. 
5 - Routinely create simple programs with sequences, events, loops, variables or 
conditionals routinely using a variety of tools, independently and collaboratively. 

E-AP-04

Decompose precise steps needed to solve a problem. 

Decomposition is the act of breaking down tasks into smaller tasks. Smaller tasks or 
sub parts (steps that can be broken down into smaller steps) may be broken down 
even further. The process of decomposition assists in areas of program development 
by enabling different people to work on different parts at the same time. Students 
should demonstrate the process of decomposition by enabling different people to work 
on different parts of program development at the same time. 

Subconcept: Modularity 

Grade-by-Grade Indicators: 
K - Generate the steps needed to solve a simple problem with prompting and support. 
1 - Generate the steps needed to solve a simple problem. 
2 - Generate and correctly order the steps needed to solve a simple problem. 
3 - Generate and correctly order the steps needed to solve a complex problem. 
4 - Decompose a problem into parts to facilitate program development. 
5 - Decompose a problem into parts and subparts to facilitate program development. 

E-AP-05

Use a process when creating programs or computational artifacts. 

Students demonstrate the use of formal and informal processes for creating 
computational artifacts or programs include processes to: ask, imagine, plan, create, 
test and improve, share; or a creative thinking spiral (i.e. imagine, create, play, share, 
reflect); and design thinking (empathize, define, ideate, prototype, test). Students 
demonstrate understanding that these processes are iterative: designed for students 
to cycle through more than once in order to improve or modify the design and reach 
the best possible result. 

Subconcept: Modularity 

Grade-by-Grade Indicators: 
K - Use a process when creating simple programs, individually OR collaboratively, with 
prompting and support. 
1 - Use a process to create simple programs, individually AND collaboratively, with 
prompting and support. 
2 - Use a process to create simple programs that include sequences. 
3 - Use a process to create programs that include sequences and events. 
4 - Use a process to create programs that includes loops, sequences or events. 
5 - Use a process to create programs that include loops, sequences, events, variables 
or conditions. 



 October 2018 | Page 17 

Identifier Standard & Description 

E-AP-06

Modify, remix or reuse part of an existing program to create a new program, 
giving attribution to others. 

The design of a new program often involves existing code or remixing other programs 
within a community (a group of people who share and provide feedback on another's 
creations). Students should credit the original creator when remixing a program or 
when ideas are borrowed and iterated upon. Students should also consider common 
licenses that place limitations or restrictions on the use of computational artifacts such 
as images and music downloaded from the Internet. At this stage, attribution should be 
written in the format required by the teacher and should always be included on any 
programs shared online. 

Subconcept: Program Development 

Grade-by-Grade Indicators: 
K - Not introduced until 3rd grade 
1 - Not introduced until 3rd grade 
2 - Not introduced until 3rd grade 
3 - Modify or add features to an existing program, with prompting and support, to 
create a new program, giving attribution. 
4 - Modify, remix or reuse parts of an existing program to create a new program, giving 
attribution. 
5 - Modify, remix, reuse parts or add features to an existing program to create a new 
program, giving attribution. 

E-AP-07

Document, share and reflect when creating programs using correct terminology. 

Documentation of the design process allows students and others to better understand 
a program. In addition, students need to have opportunities to discuss, share and 
receive feedback from peers and adults when creating and refining projects. Students 
should be using correct, age-appropriate terminology when sharing their ideas both 
verbally and written. 

Subconcept: Program Development 

Grade-by-Grade Indicators: 
K - Document simple programs, using pictures, in order to share process with others. 
1 - Document simple programs, using pictures, in order to share with others and reflect 
on the process. 
2 - Document simple programs, with pictures and/or text, to share with others and 
reflect on the process. 
3 - Document programs and discuss development process with peers. 
4 - Document programs and discuss development process with peers, using correct 
terminology. 
5 - Document programs using correct terminology and incorporate peer feedback in 
the development process. 



 October 2018 | Page 18 

Identifier Standard & Description 

E-AP-08

Identify and correct errors in an algorithm. 

Debugging is the process of isolating and correcting "bugs" in a program. As part of 
the debugging process, students demonstrate the importance of determining if the 
program is fixable (What happened? What was supposed to happen? What does this 
tell you? Is it fixable?). Students demonstrate use of an iterative process (repeating 
steps to improve desired result) when programming aids in the detection and isolation 
of programming errors. 

Subconcept: Program Development 

Grade-by-Grade Indicators: 
K - Analyze and debug simple algorithms with prompting and support. 
1 - Analyze and debug simple algorithms which includes sequencing. 
2 - Analyze and debug algorithms which includes simple loops. 
3 - Analyze and debug algorithms which includes sequencing and loops. 
4 - Analyze and debug algorithms which includes sequencing, loops and events. 
5 - Analyze and debug algorithms which includes sequencing, loops, events and 
conditionals. 

Concept: Impacts of Computing 

Identifier Standard & Description 

E-IC-01

Discuss how computing has impacted society. 

Students demonstrate an understanding that computing technology has positively and 
negatively changed the way people live and work. 

Subconcept: Culture 

Grade-by-Grade Indicators: 
K - Make observations to describe ways computing devices are used daily life. 
1 - Describe computing devices used in different careers. 
2 - Demonstrate how some tasks can be completed with or without a computing 
device. 
3 - Describe how computing technology impacts the way people live, work, and 
interact. 
4 - Compare and contrast how computing has changed society from the past to the 
present. 
5 - Describe the positive and negative impacts of computing on society. 

E-IC-02
Discover how computing devices have affected the way people communicate. 

Computing provides the possibility for constantly connected communications. Students 



 October 2018 | Page 19 

Identifier Standard & Description 

demonstrate an understanding of communications when connected and disconnected. 
Students also demonstrate collaboration and the sharing of ideas to allow the benefit 
of diverse perspectives while also demonstrating collaboration using technology can 
be synchronous (occurring at the same time) or asynchronous (not occurring at the 
same time). 

Subconcept: Social Interactions 

Grade-by-Grade Indicators: 
K - Describe different computing devices used for communication. 
1 - Describe ways people can communicate using computing devices. 
2 - Compare similarities and differences between in person and online 
communications. 
3 - Describe ways in which computing devices could be made more accessible to all 
users. 
4 - Use online collaborative spaces ethically and safely to work with other students to 
solve a problem or reach a goal. 
5 - Compare diverse perspectives, synchronously or asynchronously, to improve a 
project. 

E-IC-03

Evaluate the relevance and appropriateness of electronic information sources 
and digital media. 

Students should consider who owns digital sources they wish to use. Students should 
develop an understanding that while technology makes it easy to share digital media 
and electronic information sources, it is important to follow the rules of using other 
people's work and give attribution. Knowledge of specific copyright laws are not 
expected at this level. 

Subconcept: Safety, Law & Ethics 

Grade-by-Grade Indicators: 
K - Describe characteristics of a website, with prompting and support. 
1 - Describe the purpose of different websites, with prompting and support. 
2 - Use and cite sources from approved digital materials. 
3 - Describe the relevance and appropriateness of various electronic information 
sources and digital media. 
4 - Compare the relevance and appropriateness of various electronic information 
sources and digital media. 
5 - Use relevant and appropriate electronic information sources and digital media, 
citing resources, for various tasks. 

E-IC-04

Understand the importance of proper use of data and information in a 
computing society. 

Online communication facilitates positive and negative interactions; consequently, it is 
important to protect our data, devices and the information stored on them. Students 
demonstrate the importance of using data properly including what, how, when, and 



 October 2018 | Page 20 

Identifier Standard & Description 

with whom to share. 

Subconcept: Safety, Law & Ethics 

Grade-by-Grade Indicators: 
K - Describe characteristics of private information. 
1 - Identify harmful behaviors when using a connected device. 
2 - Demonstrate appropriate behavior when sending messages online. 
3 - Describe positive qualities of a digital citizen. 
4 - Describe potential strategies to manage and eliminate cyberbullying. 
5 - Understand consequences for sending or receiving inappropriate content. 

Concept: Computing Systems 

Identifier Standard & Description 

E-CS-01

Identify, select and operate appropriate software and hardware to perform a 
variety of tasks and recognize that users have different needs and preferences 
for the technology they use. 

People use computing devices to perform a variety of tasks accurately and quickly. 
Students should be able to use the appropriate app/program/software for tasks they 
are required to complete. Students should be able to successfully use designated 
hardware device(s) for appropriate programs. 

Subconcept: Devices 

Grade-by-Grade Indicators: 
K - Describe ways people use digital devices to perform tasks. 
1 - Use the appropriate device and application or software to complete a given task, 
with prompting and support. 
2 - Describe and use the appropriate device and application or software to complete a 
given task. 
3 - Compare and contrast various types and functions of software or applications. 
4 - Describe the capabilities and limitations of various software and applications for a 
particular use. 
5 - Justify selection of a particular computing device based on a desired application or 
task. 

E-CS-02

Identify and describe the function of common physical components of 
computing systems (hardware) using appropriate terminology. 

A computing system is composed of hardware and software. Hardware consists of 
physical components. While software consists of programs and other operating 
information used by the computing system or computer. Students should be able to 
identify and describe the function of external hardware. 



 October 2018 | Page 21 

Identifier Standard & Description 

Subconcept: Hardware & Software 

Grade-by-Grade Indicators: 
K - Use appropriate terminology to identify basic hardware. 
1 - Use appropriate terminology to identify basic software. 
2 - Describe the function of common hardware and software. 
3 - Compare and contrast features of different digital devices. 
4 - Describe the capabilities and limitations of various digital devices. 
5 - Describe the function of major hardware components of a digital device. 

E-CS-03

Describe basic hardware and software problems using accurate terminology. 

Problems with computing systems have different causes. Students should 
demonstrate the ability to communicate a computing system problem with accurate 
terminology and begin to form an understanding of possible causes. 

Subconcept: Troubleshooting 

Grade-by-Grade Indicators: 
K - Identify a simple hardware problem. 
1 - Describe simple hardware and software problems. 
2 - Use observations to distinguish between simple hardware and software problems. 
3 - Demonstrate common troubleshooting strategies to solve simple hardware and 
software problems. 
4 - Describe the causes of hardware, software and connectivity problems. 
5 - Demonstrate an appropriate response to various error messages and identify the 
component and/or application causing the error. 



 
  DRAFT - September 2018 | Page 22  

  

Middle School (6-8) 
Kentucky Academic Standards for Computer Science



 October 2018 | Page 23 

Middle School (6-8) Computer Science Standards 
Concept: Networks and The Internet 

Identifier Standard & Description 

M-NI-01

Model how different sets of rules (protocols) are used to transmit different types of 
data across networks and the Internet. 

Different protocols, such as TCP/IP, HTTP, FTP, SMTP are used for different types of 
data. Web traffic uses one protocol (HTTP), while email traffic uses another (SMTP). At 
this level, the mechanism of how the protocols work is not important. Modeling different 
protocols could be accomplished using diagrams, analogies, etc. 

Subconcept: Network Communication & Organization 

M-NI-02

Model how information is disguised using different methods of encryption to 
secure it during transmission from one point to another. 

Encryption helps to secure data so that only the intended recipients can read it. Types of 
encryption include symmetric and asymmetric encryption which take advantage of keys. 
Encoding and decoding messages can be modeled through the use of simple letter 
substitution or through more complicated methods, such as public key encryption. 

Subconcept: Cybersecurity 

M-NI-03

Explain how physical and digital security practices and measures proactively 
address the threat of breaches to personal and private data. 

Information that is stored online is vulnerable to unwanted access. Examples of physical 
security measures to protect data include keeping passwords hidden, locking doors, 
making backup copies on external storage devices, and erasing a storage device before it 
is reused. Examples of digital security measures include secure router admin passwords, 
firewalls that limit access to private networks, and the use of a protocol such as HTTPS to 
ensure secure data transmission. 

Subconcept: Cybersecurity 

Concept: Data and Analysis 

Identifier Standard & Description 

M-DA-01

Store data using multiple encoding methods. 

Data can be stored in multiple formats, from the selection of software packages for text 
(e.g. txt, rtf, log, docx, etc.), to image representation (jpeg, tiff, gif, png, etc.), to video and 
sound information (mp3, mpeg-4, mov, etc), and to storage of data into organized formats 
(e.g., tables). Choosing the most appropriate data storage format for a specific scenario is 
key to ensuring optimal data accessibility and use. 

Subconcept: Storage 



 October 2018 | Page 24 

Identifier Standard & Description 

M-DA-02

Collect data using computational tools and transform the data to make it more 
useful and reliable. 

Computational tools are used to collect, visualize, and transform data. Appropriate 
transformation of data helps to remove errors, highlight or expose relationships, and/or 
make it easier for computers to process. The cleaning of data is an important 
transformation for ensuring consistent format and reducing noise and errors (e.g., 
removing irrelevant responses in a survey). 

Subconcept: Collection, Visualization & Transformation 

M-DA-3

Refine computational models based on the data they have generated. 

A model may be a programmed simulation of events or a representation of how various 
data is related. Refining a model involves choosing relevant data points, analyzing how 
data points relate to each other, and evaluating the accuracy of the data. 

Subconcept: Inference & Models 

Concept: Algorithms and Programming 

Identifier Standard & Description 

M-AP-01

Distribute tasks and maintain a project timeline when collaboratively developing 
computational artifacts. 

Collaboration is a common and crucial practice in programming development. Program 
developers often take on varying roles during the design, implementation and review 
stages of program development, including but not limited to graphic design and code 
writing. 

Subconcept: Program Development 

M-AP-02

Decompose problems and subproblems into parts to facilitate the design, 
implementation, and review of programs. 

Decompose (break down) problems into smaller, more manageable, individual steps. 
Stepping through the execution of a program is a common practice when debugging and 
ensuring the accuracy of the program. 

Subconcept: Modularity 

M-AP-03

Seek and incorporate feedback from team members and users to refine a solution 
that meets user needs. 

Solicit diverse perspectives throughout the design process to improve artifacts. 
Considerations of the end-user may include usability, accessibility, age-appropriate 
content, respectful language, user perspective, pronoun use, color contrast, and ease of 
use. 



 October 018 | Page 25 

Identifier Standard & Description 

Subconcept: Program Development 

M-AP-04

Create flowcharts and/or pseudocode to address complex problems as algorithms. 

A flowchart visually represents an algorithm used to solve a problem. Pseudocode uses a 
written language. Both are means of logically thinking through a problem before actual 
programming begins and identify the steps needed to process input(s) to produce the 
desired output(s). 

Subconcept: Algorithms 

M-AP-05

Create clearly named variables that represent different data types and perform 
operations on their values. 

A variable is like a container with a name, in which the contents may change, but the 
name (identifier) does not. When planning and developing programs decide when and 
how to declare and name new variables. Determine the appropriate type and size of 
variable to use. Use naming conventions to improve program readability. 

Subconcept: Variables 

M-AP-06

Create procedures with parameters to organize code and make it easier to reuse. 

Create procedures and/or functions that are used multiple times within a program to 
repeat groups of instructions. Define parameters within the procedure that allow for 
varying input. 

Subconcept: Modularity 

M-AP-07

Design and iteratively develop programs that combine control structures, including 
nested loops and compound conditionals. 

Control structures can be combined in many ways. Nested loops are loops placed within 
other loops. Compound conditional statements use two or more conditions (e.g., AND, 
OR, and NOT) in a logical relationship. Nesting conditionals within one another allows the 
result of one conditional to lead to another. 

Subconcept: Control 

M-AP-08

Incorporate existing code, media, and libraries into original programs, and give 
attribution. 

Insert portions of digital media in their own programs and websites. May also import 
libraries and connect to web application program interfaces (APIs). 

Subconcept: Program Development 



 October 2018 | Page 26 

Identifier Standard & Description 

M-AP-09

Systematically test and refine programs using a range of test cases. 

Evaluate whether programs function as intended. Testing should be a deliberate process 
that is more iterative, systematic, and proactive than at lower levels. Test programs for 
potential errors. 

Subconcept: Program Development 

M-AP-10

Document programs in order to make them easier to follow, test, and debug. 

Provide documentation for end users that explains their artifacts and how they function. 
Proper documentation aids in debugging and future program modification. 

Subconcept: Program Development 

M-AP-11

Evaluate licenses that limit or restrict use of computational artifacts when using 
resources such as libraries. 

Consider licensing implications for their own work, especially when incorporating libraries 
and other resources. When considering two software libraries that address a similar need, 
a choice could be justified based on the library that has the least restrictive license. 

Subconcept: Program Development 

M-AP-12

Develop a process creating a computational artifact that leads to a minimum viable 
product followed by reflection, analysis, and iteration. 

Complex programs are designed as systems of interacting modules, each with a specific 
role, coordinating for a common overall purpose. These modules can be procedures 
within a program; combinations of data and procedures; or independent, but interrelated, 
programs. The development of complex programs is aided by resources such as libraries 
and tools to edit and manage parts of the program. 

Subconcept: Program Development 



 October 2018 | Page 27 

Concept: Impacts of Computing 

Identifier Standard & Description 

M-IC-01

Discuss issues of bias and accessibility in existing technologies. 

Every device has inherent issues that influence usage and adoption across all users. 
Issues of pricing, production, user access and interface design, reliability, sustainability, 
and exclusivity all influence existing technologies and how they are used by different 
populations. 

Subconcept: Culture 

M-IC-02

Compare the positive & negative effects of computing technologies on society. 

The use of technology has reshaped our society in ways not imagined a few short 
decades ago. Social media, online video, apps, and cloud services have changed the way 
we interact and those changes should be actively investigated and explored to see the full 
effects. 

Subconcept: Culture 

M-IC-03

Collaborate with others using appropriate tools at the local, national, and/or 
international levels. 

Promoting positive experiences in shared work environments is a key component of digital 
citizenship. Learning to respect the opinions of others and use collaborative spaces to 
work toward common goals is important to participate effectively in a growing global 
community. Opportunities for collaboration should be made available to students using 
different tools and different platforms. 

Subconcept: Social Interactions 

M-IC-04

Discuss the benefits and consequences of making information either public or 
private. 

How we choose to share information in the digital age has far-reaching implications for the 
lives of students and the schools they attend. Discussions should take place on what 
information can and should be shared and how to keep private information private or not 
accessible online at all. 

Subconcept: Safety, Law & Ethics 



 October 2018 | Page 28 

Concept: Computing Systems 

Identifier Standard & Description 

M-CS-01

Recommend improvements to the design of computing devices based on an 
analysis of how users interact with the devices. 

The study of human–computer interaction (HCI) can improve the design of devices, 
addressing both hardware and software. Suggest improvements to existing devices. 
Design alternative components or interfaces (controllers, graphical interfaces, peripherals, 
etc.). Evaluate usability based on various metrics, including accessibility, ergonomics, 
learnability. 

Subconcept: Devices 

M-CS-02

Design projects that combine hardware and software components to collect and 
exchange data. 

Collecting and exchanging data involves input, output, storage, and processing. Select 
appropriate hardware and software components for project designs by considering factors 
such as functionality, cost, size, mobility, speed, accessibility, and aesthetics. 

Subconcept: Hardware & Software 

M-CS-03

Identify and fix problems with computing devices and their components 
systematically. 

Since a computing device may interact with other interconnected devices within a system, 
problems may be due to either the specific computing device itself or to devices 
connected to it. Create and follow detailed, structured processes for troubleshooting 
problems within computing systems and ensuring that potential solutions are not 
overlooked. Develop flow diagrams, modify software to test hardware, check connections 
and settings, and swap in working components. 

Subconcept: Troubleshooting 



 
  DRAFT - September 2018 | Page 29  

  

High School (9-12) 
Kentucky Academic Standards for Computer Science



 October 018 | Page 30 

High School (9-12) Computer Science 
Networks and the Internet 

Identifier Standard & Descriptor 

H-NI-01

Evaluate the scalability and reliability of networks, by describing the relationship 
between routers, switches, end devices, topology, and addressing. 

A computer network consists of a set of computational devices that are interconnected by 
wired or wireless network mediums to allow for sharing resources and enabling convenient 
communication. Networks environments are created by switches and communicate to 
other networks through routers. Devices are assigned unique addresses to identify devices 
in the network. Students should be able to describe different types of networks, network 
topologies, networking devices, and how they facilitate or limit the network growth 
(scalability). 

Subconcept: Network Communication & Organization 

H-NI-02

Give examples to illustrate how sensitive data can be affected by viruses, malware 
and other attacks. 

Network security depends on a combination of hardware, software, and practices that 
control access to data and systems. Students should be able to discuss potential network 
attacks such as denial of service attacks, ransomware, viruses, worms, spyware, phishing, 
and how these attacks present threats to sensitive data; to discuss real-life examples of 
such threats; and to understand the safety precautions and good practices to protect 
privacy when using public and private networks. 

Subconcept: Cybersecurity 

H-NI-03

Recommend security measures to address various scenarios based on factors such 
as usability, efficiency, feasibility, and ethical impacts. 

Security measures have been developed for the protection of data and network operation. 
Security measures involve tradeoffs between the usability and security of the system. 
Students should be able to determine the appropriate level of implemented security, based 
on the evaluation of the users' needs regarding the usability, proper operation of the 
network, and sensitivity of data. 

Subconcept: Cybersecurity 

H-NI-04

Describe the issues that impact network functionality (e.g., bandwidth, load, delay, 
topology). * 

The structure and makeup of networks, and network properties affect networks 
functionality. Students should be able to describe the significant features of networks, 
network topologies, the speed and capacity of a network. (bandwidth vs. latency), network 
protocols, and use simulators to experiment with network topologies, functionality, and 
reliability. 



 October 2018 | Page 31 

Identifier Standard & Descriptor 

Subconcept: Network Communication & Organization 

H-NI-05

Compare ways software developers protect devices and information from 
unauthorized access. * 

Because most devices are not secure, choosing to implement security measures involves 
trade-offs between the usability and security of the system as well as the individual needs 
of the user. Students should be able to discuss the difference between symmetric and 
asymmetric encryption and should be able to describe encryption algorithms, hashing and 
various message authentication methods. 

Subconcept: Cybersecurity 

Data & Analysis 

Identifier Standard & Descriptor 

H-DA-01

Evaluate the tradeoffs in how data elements are organized and where data is stored.* 

Students should be able to evaluate the organization and storage of data depending on the 
type of data (e.g., text, video, audio, image, number, etc.), the storage medium, and the 
data retrieval needs. 

Subconcept: Storage 

H-DA-02

Collect data using appropriate data collection tools and techniques to support a 
claim or to communicate information. 

Data can be collected using a variety of technological and non-technological tools and 
resources. A claim or information should be supported with appropriate data. The 
techniques for collecting the data depend on the tool used and the purpose of the data. 
Students should be able to evaluate, recommend and use data collection tools in order to 
support a claim or provide information to an appropriate population. 

Subconcept: Collection, Visualization & Transformation 

H-DA-03

Understand and design database structures to optimize search and retrieval.* 

Students should be able to design and explain how data can be organized in a database 
by using data structures (e.g., fields, records, rows, tables, relationships, etc.) to facilitate 
search and retrieval and to reduce file sizes. Students should know about different 
database models (e.g., relational, object oriented, distributed, online, etc.). 

Subconcept: Collection, Visualization & Transformation 

H-DA-04

Explain the privacy concerns related to the collection and generation of data. 

Privacy concerns exist wherever personally identifiable information or other sensitive 
information is collected, stored, used, and finally destroyed or deleted – in digital form or 



 October 2018 | Page 32 

Identifier Standard & Descriptor 

otherwise. Information and privacy can be exploited if privacy and other protections are 
ignored (selling of identifiable information to third parties, background tracking of internet 
searches). Students should be able to explain that technology allows the collection, use, 
generation, and possible exploitation of data by private, commercial, and government 
entities. 

Subconcept: Collection, Visualization & Transformation 

H-DA-05

Use data analysis tools (e.g. formulas and other software data / statistical tools) to 
process and transform the data to make it more useful and reliable. 

Students should be able to take data and make it meaningful using data analysis tools. 
Data analysis tools contain advanced features, including formulas and statistical functions, 
that facilitate proper inference process. 

Subconcept: Collection, Visualization & Transformation 

H-DA-06

Use data analysis tools and techniques to identify patterns and analyze data 
represented in complex systems. 

Students should be able to use data analysis tools to allow for the extraction of information 
thus enabling opportunity to identify trends, make discoveries and connections. 

Subconcept: Inference & Models 

H-DA-07

Create computational models that represent the relationships among different 
elements of data. 

Students should be able to create computational models that represent the structure and 
inter-dependencies in data, in order to facilitate processing of information, and to identify 
patterns within data sets. 

Subconcept: Inference & Models 

H-DA-08

Create interactive data visualizations using software tools to help others better 
understand real-world phenomena. 

Students should be able to use interactive software tools that allow for effective discovery 
through visualizations by communicating understanding and knowledge from digitally 
represented sources. 

Subconcept: Collection, Visualization & Transformation 

H-DA-09

Evaluate the ability of models and simulations to test and support the refinement of 
hypotheses.* 

Students should be able to support and refine hypotheses using computational models. 
Computational models may differ in functionality and relevance based upon how data is 
recognized and utilized. 



 October 2018 | Page 33 

Identifier Standard & Descriptor 

Subconcept: Inference & Models 

Algorithms & Programming 

Identifier Standard & Descriptor 

H-AP-01

Evaluate licenses that limit or restrict use of computational artifacts when using 
resources such as libraries. 

At previous levels, students adhered to licensing schemes. At this level, students should 
consider and be able to explain licensing implications for their own work, especially when 
incorporating libraries and other resources. 

Subconcept: Program Development 

H-AP-02

Use a development process in creating a computational artifact that leads to a 
minimum viable product followed by reflection, analysis, and iteration. 

At previous levels students have developed artifacts in ad-hoc way. By high school, 
students should be introduced to the discipline of software development. In particular, we 
focus on analysis, reflection and iteration. When given a problem students should be able 
to fully explain the problem, consider possible ways to solve it and then apply one of the 
possible ways. Consideration of possible ways to solve a software problem is termed 
'Software Design' and/or 'Analysis'. Once the solution has been implemented and tested, 
students should reflect on what worked and didn't work during that process. Students will 
then apply this process again to update the artifact (iteration), continuing to refine the 
artifact itself while also continuing to improve the process. 

Subconcept: Program Development 

H-AP-03

Use functions, data structures or objects to simplify solutions, generalizing 
computational problems instead of repeated use of simple variables. 

Students should be able to identify common features in multiple segments of code and 
substitute a single segment/abstraction (function, data structure or object) to account for 
the differences. 

Subconcept: Variables 

H-AP-04

Design and iteratively develop event-driven computational artifacts for practical 
intent, personal expression, or to address a societal issue. 

Relevant computational artifacts include programs, mobile apps, or web apps. Events can 
be user-initiated, such as a button press, or system-initiated, such as a timer firing. At 
previous levels, students have learned to create and call procedures. Students should be 
able to design and implement procedures that are called by events. 

Subconcept: Program Development 



 October 2018 | Page 34 

Identifier Standard & Descriptor 

H-AP-05

Decompose problems into smaller components through systematic analysis, using 
constructs such as procedures, modules, and/or objects. 

Students should be able to decompose complex problems into manageable sub problems 
that could potentially be solved with programs or procedures that already exist. 

Subconcept: Modularity 

H-AP-06

Justify the selection of specific control structures when tradeoffs involve 
implementation, readability, and program performance and explain the benefits and 
drawbacks of choices made. 

Implementation includes the choice of programming language, which affects the time and 
effort required to create a program. Readability refers to how clear the program is to other 
programmers and can be improved through documentation. The discussion of performance 
is limited to a theoretical understanding of execution time and storage requirements; a 
quantitative analysis is not expected. Control structures should include conditional 
statements, loops, and event handlers. 

Subconcept: Control 

H-AP-07

Create prototypes that use algorithms to solve computational problems by 
leveraging prior student knowledge and personal interests. 

A prototype is a computational artifact that demonstrates the core functionality of a product 
or process. Prototypes are useful for getting early feedback in the design process, and can 
yield insight into the feasibility of a product. The process of developing computational 
artifacts embraces both creative expression and the exploration of ideas to create 
prototypes and solve computational problems. Students create artifacts that are personally 
relevant or beneficial to their community and beyond. Students should develop artifacts in 
response to a task or a computational problem that demonstrate the performance, re-
usability, and ease of implementation of an algorithm. 

Subconcept: Algorithms 

H-AP-08

Create artifacts by using procedures within a program, combinations of data and 
procedures, or independent but interrelated programs. 

Computational artifacts can be created by combining and modifying existing artifacts or by 
developing new artifacts. Examples of computational artifacts include programs, 
simulations, visualizations, digital animations, robotic systems, and apps. Complex 
programs are designed as systems of interacting modules, each with a specific role, 
coordinating for a common overall purpose. Modules allow for better management of 
complex tasks. The focus at this level is understanding a program as a system with 
relationships between modules. The choice of implementation, such as programming 
language or paradigm, may vary. Students could incorporate computer vision libraries to 
increase the capabilities of a robot or leverage open-source JavaScript libraries to expand 
the functionality of a web application. 



 October 2018 | Page 35 

Identifier Standard & Descriptor 

Subconcept: Program Development 

H-AP-09

Evaluate and refine computational artifacts to make them more usable and 
accessible using systematic testing and debugging. 

Testing and refinement is the deliberate and iterative process of improving a computational 
artifact. This process includes debugging (identifying and fixing errors) and comparing 
actual outcomes to intended outcomes. Students should respond to the changing needs 
and expectations of end users and improve the performance, reliability, usability, and 
accessibility of artifacts. 

Subconcept: Program Development 

H-AP-10

Systematically design and develop programs for broad audiences by incorporating 
feedback from users. 

Students at lower levels collect feedback and revise programs. At this level, students 
should do iterations through a systematic process that includes feedback from broad 
audiences. It is important for students to be able to gather feedback from the audience 
including peers, teachers and family members to make design decisions based on the 
feedback. 

Subconcept: Program Development 

H-AP-11

Design and develop computational artifacts working in team roles using 
collaborative tools.* 

As programs grow more complex, the choice of resources that aid program development 
becomes increasingly important and should be made by the students. Students might work 
as a team to develop a mobile application that addresses a problem relevant to the school 
or community, selecting appropriate tools to establish and manage the project timeline; 
design, share, and revise graphical user interface elements; and track planned, in-
progress, and completed components. 

Subconcept: Program Development 

H-AP-12

Describe how artificial intelligence drives many software and physical systems.* 

Artificial Intelligence, unlike algorithms, is a mechanism where programs make decisions 
on what to execute based on its environment similar to how humans make decisions. In the 
era of big data, artificial intelligence is becoming pervasive and students should be able to 
describe how AI is used in everyday software systems. 

Subconcept: Program Development 

H-AP-13

Use and adapt classic algorithms to solve computational problems.* 

Students should be able to identify and use well-known algorithms in sorting (e.g., bubble 
sort, quicksort, merge sort, insertion sort), searching (e.g., linear search, binary search), 



 October 2018 | Page 36 

Identifier Standard & Descriptor 

and shortest-path (e.g., Dijkstra's algorithm) problems. Students will also be able to adapt 
and combine such well-known algorithms to add features that address more complex 
computational tasks. 

Subconcept: Algorithms 

H-AP-14

Evaluate algorithms in terms of their efficiency, correctness, and clarity.* 

Students should be able to calculate the total number times a loop will be executed given a 
code snippet, will be able to state whether an algorithm is correct for solving a given 
problem, and compare/contrast algorithms for clarity and the number of executed 
operations. 

Subconcept: Algorithms 

H-AP-15

Compare and contrast fundamental data structures and their uses.* 

Students should be able to name the fundamental data structures (array, list, stack, queue 
and tree) and defend the use of a data structure's use to solve different problems in sorting 
and searching. 

Subconcept: Control 

H-AP-16

Illustrate the flow of execution of a recursive algorithm.* 

A recursive algorithm is a procedure or function which when implemented in a 
programming language calls itself. The algorithm solves a smaller problem with each call. 
Students should be able to identify the termination case and recursive call case in a 
recursive algorithm and describe the state of the problem space during each call. 

Subconcept: Algorithms 

H-AP-17

Construct solutions to problems using student-created components, such as 
procedures, modules and/or objects.* 

At this level, students should be regularly implementing programming solutions using some 
form of structured design with multiple functions/procedures/modules in different files. 
Object-oriented programming is optional at this level. Problems can be assigned or 
student-selected. 

Subconcept: Program Development 

H-AP-18

Analyze a large-scale computational problem and identify generalizable patterns that 
can be applied to a solution.* 

As students encounter complex, real-world problems that span multiple disciplines or social 
systems, they should decompose complex problems into manageable sub problems that 
could potentially be solved with programs or procedures that already exist. 

Subconcept: Modularity 



 October 2018 | Page 37 

Identifier Standard & Descriptor 

H-AP-19

Select and employ an appropriate component or library to facilitate programming 
solutions.* 

Students should be able to use (or, actually reuse) existing code when quality code already 
exists to accomplish the needed task. Libraries and APIs can be student-created, part of 
the software development platform or external libraries or APIs selected for their features. 

Subconcept: Program Development 

H-AP-20

Develop programs for multiple computing platforms.* 

Students need to understand the pervasiveness of computing and that computers exist in 
many different forms. Students should be able to develop software programs that run on a 
desktop/laptop as well as other IOT and/or mobile devices. 

Subconcept: Program Development 

H-AP-21

Use version control systems, integrated development environments (IDEs), and 
collaborative tools and practices (code documentation) in a group software project.* 

Students need to learn the major tools and skills of software development including version 
control systems to keep track of all releases (and to back out changes), IDEs to simplify 
writing and testing of code, documentation of code for code maintenance. Students should 
be able to explain how these tools are critical to team-developed projects. Group software 
projects can be assigned or student-selected. 

Subconcept: Control 

H-AP-22

Modify an existing program to add additional functionality and discuss intended and 
unintended implications (e.g., introducing errors).* 

Students should be able to understand and provide examples highlighting that adding 
functionality to software can introduce new errors, reduce functionality or add an 
unintended feature. 

Subconcept: Program Development 

H-AP-23

Evaluate key qualities (including correctness, usability, readability, and efficiency) 
of a program.* 

Given a software program, students should be able to evaluate it in terms of software 
quality using standard software metrics including readability, usability and efficiency. 

Subconcept: Program Development 

H-AP-24

Compare multiple programming languages and discuss how their features make 
them suitable for solving different types of problems.* 

Students should be able to explain the difference between a compiled and scripted 
programming language, defend a choice of a programming language for a certain 



 October 2018 | Page 38 

Identifier Standard & Descriptor 

computing device and defend a choice of a language (3rd generation versus 4th 
generation) for solving different types of problems. 

Subconcept: Program Development 

Impacts of Computing 

Identifier Standard & Descriptor 

H-IC-01

Reduce bias and equity deficits through the design of accessible computational 
artifacts. 

Within the context of computing, one must account for the factors of equity, ethics, access 
and training in the design of computational artifacts for diverse populations. The ability 
identify potential bias in one's own work and apply professional practices associated with 
increasing accessibility in the design of one's own artifacts is a crucial skill in computational 
development. 

Subconcept: Culture 

H-IC-02

Evaluate and assess how computing impacts personal, ethical, social, economic, 
and cultural practices. 

Within the context of computing, one must account for the factors of equity, ethics, access 
and training when developing products for a variety of end users. Computer science 
requires practitioners to evaluate the accessibility of a product to a global society and 
assess the implications on that society. 

Subconcept: Social Interactions 

H-IC-03

Research how computational innovations that have revolutionized aspects of our 
culture might have evolved from a need to solve a problem. 

Computational design can share features across disciplines (i.e. art, music etc.) by 
translating human intention into an artifact through algorithmic development and the need 
to solve a problem. Students should conduct research relating to the evolution of a 
computing innovation from the need to address a perceived need or solve a problem in any 
discipline or career field. 

Subconcept: Culture 

H-IC-04

Explain the beneficial and harmful effects that laws governing data (intellectual 
property, privacy etc.) can have on innovation. 

International differences in laws and ethics have implications for computing in a global 
society (i.e. privacy, data, property, information, and identity). Students should be aware of 
intellectual property laws and be able to explain how they are used to protect the interests 
of innovators or abused for financial gain. 



 October 2018 | Page 39 

Identifier Standard & Descriptor 

Subconcept: Safety, Law & Ethics 

H-IC-05

Evaluate and design computational artifacts to maximize their benefit to society.* 

Within the context of computing, one must account for the factors of equity, security, ethics, 
access and privacy in the design of computational artifacts for diverse populations. 
Students should be able to identify potential bias in the work of others and make 
suggestions in order to make them more beneficial in a diverse society as well as decrease 
security deficits that could result in harms to culture, society or the economy. 

Subconcept: Safety, Law & Ethics 

H-IC-06

Evaluate the impact of the digital divide (i.e. inequity of computing access, 
education and influence) on the development of local communities and society. 

Within the context of computing, one must account for the factors of equity, ethics, access 
and training when developing products for a variety of end users. Students should be able 
to evaluate the effect the digital divide has and can have on development, innovation and 
the culture of society. 

Subconcept: Culture 

H-IC-07

Demonstrate ways computational design (i.e. algorithms, abstractions and analysis) 
can apply to problems across disciplines.* 

Computational design can share features across disciplines (i.e. art, music etc.) by 
translating human intention into an artifact through algorithmic development and the need 
to solve a problem. Students should be able to demonstrate how these features are shared 
across disciplines and how real-world problems can be solved using computational 
methods. 

Subconcept: Culture 

H-IC-08

Debate laws and regulations that impact the development and use of software and 
the protection of privacy. 

International differences in laws and ethics have implications for computing in a global 
society (i.e. privacy, data, property, information, and identity). Students should evaluate 
case studies or current events which present an ethical dilemma contrasting an individual's 
right to privacy and the safety, security, or well-being of a community. 

Subconcept: Safety, Law & Ethics 



 October 2018 | Page 40 

Computing Systems 

Identifier Standard & Descriptor 

H-CS-01

Explain how abstractions hide the underlying implementation details of computing 
systems embedded in everyday objects. 

Computing devices are often integrated with other systems (biological, mechanical, and 
social etc.). Students should be able to select an embedded device, identify the types of 
data and procedures it includes, and explain how the implementation details are hidden 
from the user. 

Subconcept: Devices 

H-CS-02

Compare levels of abstraction and interactions between application software, 
system software and hardware layers. 

At its most basic level, computers and computing system are composed of physical 
hardware with the ability to store, interpret and send bits. Some complex solutions use a 
multiple layer model where layers of software are built upon the hardware and interact only 
with the layers above and below them to separate functions and responsibilities in order to 
reduce system complexity. Students should be able to understand the abstraction in the 
layer model, and its benefits. 

Subconcept: Hardware & Software 

H-CS-03

Develop guidelines that convey systematic troubleshooting strategies that others 
can use to identify and fix errors. 

Troubleshooting complex problems involves the use of multiple sources when researching, 
evaluating, and implementing potential solutions. Troubleshooting also relies on 
experience, such as when people recognize that a problem is similar to one they have 
seen before or adapt solutions that have worked in the past. Students should be able to 
develop versions of troubleshooting guidelines based upon test cases of their choosing. 

Subconcept: Troubleshooting 

H-CS-04

Categorize the roles of operating system software. 

Students should be able to define an operating system and identify its different roles and 
characteristics. 

Subconcept: Hardware & Software 

H-CS-05

Illustrate ways computing systems implement logic, input, and output through 
hardware components.* 

Students should be able to describe, via pictures or prose, the basic von Neumann 
architecture, CPU and I/O processing and the fetch, decode and execute cycle. 

Subconcept: Hardware & Software 



 October 2018 | Page 41 

References 
Computer Science Teachers Association. (2017). CSTA Computer Science Standards. 

Retrieved from https://www.csteachers.org/page/standards 

K-12 Computer Science Framework Steering Committee. (2016). K-12 computer science
framework. Retrieved from https://k12cs.org/wp-
content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf 

Kentucky Department of Education. (2015). Kentucky Academic Standards Technology. 
Retrieved from 
https://education.ky.gov/curriculum/standards/kyacadstand/Documents/Kentucky_Acade
mic_Standards_Technology.pdf  

Office of Educational Technology. (2017). Reimagining the role of technology in education: 
National Education Technology Plan Update. US Department of Education. Retrieved 
from http://tech.ed.gov/netp/  

Promote computer science. (2017, December 1). Retrieved from https://code.org/promote/ky 

Southern Regional Education Board. (2016). Bridging the computer science education gap. 
Retrieved from https://www.sreb.org/publication/bridging-computer-science-education-
gap  

https://www.csteachers.org/page/standards
https://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf
https://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf
https://education.ky.gov/curriculum/standards/kyacadstand/Documents/Kentucky_Academic_Standards_Technology.pdf
https://education.ky.gov/curriculum/standards/kyacadstand/Documents/Kentucky_Academic_Standards_Technology.pdf
http://tech.ed.gov/netp/
https://code.org/promote/ky
https://www.sreb.org/publication/bridging-computer-science-education-gap
https://www.sreb.org/publication/bridging-computer-science-education-gap


 October 2018 | Page 42 

Appendix A: Glossary of Terms 
Disciplinary terms are used throughout the Kentucky Academic Standards for Computer 
Science and its supporting materials. The following interactive glossary, hosted by the K12 
Computer Science Framework, provides an alphabetical list of key definitions and descriptions 
of valuable terms. The glossary includes definitions of terms used in the standard statements, 
the standard descriptions and throughout the framework. These terms are defined for readers 
of the standards and are not necessarily intended to be used as the exclusive definitions or 
terms that are seen by students. 

Online glossary from K12 Computer Science Framework: https://k12cs.org/glossary/ 

https://k12cs.org/glossary/


 October 2018 | Page 43 

Appendix B: Writing and Review Committees 
The writing team, composed of current computer science or technology-related teachers and 
education professionals, represented both rural and urban settings – including representation 
from large, medium and small districts from all regions of the state. While these teachers taught 
a variety of courses and grade levels throughout their careers, the selected committee 
members were currently teaching or leading areas related to the standards development 
process. Additionally, the selected writers served in many roles in their schools, technology or 
computer science community and a wide variety of professional organizations. To ensure 
fidelity to the standards, the writing committee provided feedback at all stages of the 
development process. The writing and review committee members listed below represented 
Kentucky’s best as evidenced by their countless qualifications. 

Writing Team Members 
Dr. Andrea Peach, Georgetown College 

Donnie Piercey, Eminence Independent Schools 
Heather Korrell, Hardin County Schools 

Dr. Jerzy Jaromczyk, University of Kentucky 
Joe Beers, Jessamine County Schools 

Joy Neace, Lee County Schools 
Kerri Snow, Pikeville Independent Schools 
Dr. Leanna Prater, Fayette County Schools 

Dr. Maureen Doyle, Norther Kentucky University 
Melissa Metcalf, Madision County Schools 

Mike Paul, Bardstown Independent Schools 
Nikkol Bauer, Henry County Schools 

Sandra Hancock, Christian County Schools 
Dr. Sarah Bumpas, Jefferson County Schools 

Scott Dossett, McCracken County Schools 
Scott Horan, Jefferson County Schools 
Sean Jackson, Mason County Schools 

Shane Jordan, Russell Independent Schools 
Stephanie Younger, Pike County Schools 

Steven May, Daviess County Schools 
Tabetha Cooksey, Cumberland County Schools 

Oversight and Feedback Team Members 
Aaron Yeiser, Daviess County Schools 

Dr. Adel Elmaghraby, University of Louisville 
Dr. George Landon, Eastern Kentucky University 
Holli McClelland, Fairview Independent Schools 

Dr. Joan Mazur, University of Kentucky 
Mitch Hawkins, Clay County Schools 



 October 018 | Page 44 

Sonja Fischer, Fort Thomas Independent Schools 
Tabetha Housekeeper, Scott County Schools 

Ruth Ann Gumm, Barren County Schools 

Business and Industry Trusted Partners 
Ankur Gopal, Interapt  

Jena Collins, Apple Inc. 
John Allen, Google 

Kentucky Computer Science Teachers Association 
 Mardi Montgomery, Education & Workforce Development Cabinet 

Melissa Rowe, Amazon 
Monique Morton-Rice, AdvanceKentucky 

Nick Such, Awesome Inc. 
Sarah Skinner, BrightBytes 

Tim Cornett, Microsoft 
Vidya Ravichandran, Glowtouch 

Dr. Wayne Lewis, Education & Workforce Development Cabinet 



October 2018 | Page 45 

Appendix C: Standards Progression Chart 



Kentucky Academic Standards (KAS) for Computer Science 

Progression Chart

1 

Concept Subconcept Grades K-5 

By the end of Grade 5, 

students will be able to: 

Grades 6-8 

By the end of Grade 8, 

students will be able to: 

Grades 9-12 

By the end of Grade 12, 

students will be able to: 

Networks & the Internet Network Communication & 

Organization 

E-NI-01: Understand the

basic components of how

networks operate to protect

physical and digital

information.

M-NI-01: Model how

different sets of rules

(protocols) are used to

transmit different types of

data across networks and the

Internet.

H-NI-01: Evaluate the

scalability and reliability of

networks, by describing the

relationship between routers,

switches, end devices,

topology, and addressing.

Networks & the Internet Network Communication & 

Organization 
- -

H-NI-04: Describe the issues

that impact network

functionality (e.g.,

bandwidth, load, delay,

topology). *

Networks & the Internet Cybersecurity E-NI-02: Model how

information is broken down

into smaller pieces (data

packets), transmitted over

various paths (physical and/or

wireless), and reassembled at

the destination

M-NI-02: Model how

information is disguised using

different methods of

encryption to secure it during

transmission from one point

to another.

H-NI-02: Give examples to

illustrate how sensitive data

can be affected by viruses,

malware and other attacks.

Networks & the Internet Cybersecurity 

Not introduced at this grade 
band.

M-NI-03: Explain how

physical and digital security

practices and measures

proactively address the threat

of breaches to personal and

private data.

H-NI-03: Recommend

security measures to address

various scenarios based on

factors such as usability,

efficiency, feasibility, and

ethical impacts.

Networks & the Internet Cybersecurity 
- - 

H-NI-05: Compare ways

software developers protect

devices and information from

unauthorized access. *

Data & Analysis Storage E-DA-01: Appropriately

store and modify digital files.

M-DA-01: Store data using

multiple encoding methods.

H-DA-01: Evaluate the

tradeoffs in how data

elements are organized and

where data is stored.*



Kentucky Academic Standards (KAS) for Computer Science 

Progression Chart

2 

Concept Subconcept Grades K-5 

By the end of Grade 5, 

students will be able to: 

Grades 6-8 

By the end of Grade 8, 

students will be able to: 

Grades 9-12 

By the end of Grade 12, 

students will be able to: 

Data & Analysis Collection, Visualization & 

Transformation 

E-DA-02: Collect and

visually display data using

appropriate applications.

M-DA-02: Collect data using

computational tools and

transform the data to make it

more useful and reliable.

H-DA-02: Collect data using

appropriate data collection

tools and techniques to

support a claim or to

communicate information.

Data & Analysis Collection, Visualization & 

Transformation 
- -

H-DA-03: Understand and

design database structures to

optimize search and

retrieval.*

Data & Analysis Collection, Visualization & 

Transformation 
- -

H-DA-04: Explain the

privacy concerns related to

the collection and generation

of data.

Data & Analysis Collection, Visualization & 

Transformation 
- -

H-DA-05: Use data analysis

tools (e.g. formulas and other

software data / statistical

tools) to process and

transform the data to make it

more useful and reliable.

Data & Analysis Collection, Visualization & 

Transformation - -
H-DA-08: Create interactive

data visualizations using

software tools to help others

better understand real-world

phenomena.

Data & Analysis Inference & Models E-DA-03: Analyze data for

trends and relationships

M-DA-03: Refine

computational models based

on the data they have

generated.

H-DA-06: Use data analysis

tools and techniques to

identify patterns and analyze

data represented in complex

systems.

Data & Analysis Inference & Models 

- -
H-DA-07: Create

computational models that

represent the relationships

among different elements of

data.



Kentucky Academic Standards (KAS) for Computer Science 

Progression Chart

3 

Concept Subconcept Grades K-5 

By the end of Grade 5, 

students will be able to: 

Grades 6-8 

By the end of Grade 8, 

students will be able to: 

Grades 9-12 

By the end of Grade 12, 

students will be able to: 

Data & Analysis Inference & Models 

- -
H-DA-09: Evaluate the

ability of models and

simulations to test and

support the refinement of

hypotheses.*

Algorithms & Programming Algorithms E-AP-01: Create, follow,

compare and refine

algorithms for a task.

M-AP-04: Create flowcharts

and/or pseudocode to address

complex problems as

algorithms.

H-AP-07: Create prototypes

that use algorithms to solve

computational problems by

leveraging prior student

knowledge and personal

interests.

Algorithms & Programming Algorithms - - H-AP-13: Use and adapt

classic algorithms to solve

computational problems.*

Algorithms & Programming Algorithms 
- -

H-AP-14: Evaluate

algorithms in terms of their

efficiency, correctness, and

clarity.*

Algorithms & Programming Algorithms - - H-AP-16: Illustrate the flow

of execution of a recursive

algorithm.*

Algorithms & Programming Variables E-AP-02: Explore and use

variables in a program.

M-AP-05: Create clearly

named variables that

represent different data types

and perform operations on

their values.

H-AP-03: Use functions, data

structures or objects to

simplify solutions,

generalizing computational

problems instead of repeated

use of simple variables.

Algorithms & Programming Control E-AP-03: Routinely create

programs using a variety of

tools to express ideas, address

a problem or create an

artifact, individually and

collaboratively.

M-AP-07: Design and

iteratively develop programs

that combine control

structures, including nested

loops and compound

conditionals.

H-AP-06: Justify the

selection of specific control

structures when tradeoffs

involve implementation,

readability, and program

performance and explain the

benefits and drawbacks of

choices made.



Kentucky Academic Standards (KAS) for Computer Science 

Progression Chart

4 

Concept Subconcept Grades K-5 

By the end of Grade 5, 

students will be able to: 

Grades 6-8 

By the end of Grade 8, 

students will be able to: 

Grades 9-12 

By the end of Grade 12, 

students will be able to: 

Algorithms & Programming Control - - H-AP-15: Compare and

contrast fundamental data

structures and their uses.*

Algorithms & Programming Control 

- -

H-AP-21: Use version

control systems, integrated

development environments

(IDEs), and collaborative

tools and practices (code

documentation) in a group

software project.*

Algorithms & Programming Modularity E-AP-04: Decompose precise

steps needed to solve a

problem.

M-AP-02: Decompose

problems and subproblems

into parts to facilitate the

design, implementation, and

review of programs.

H-AP-05: Decompose

problems into smaller

components through

systematic analysis, using

constructs such as

procedures, modules, and/or

objects.

Algorithms & Programming Modularity E-AP-05: Use a process

when creating programs or

computational artifacts.

M-AP-06: Create procedures

with parameters to organize

code and make it easier to

reuse.

H-AP-18: Analyze a large-

scale computational problem

and identify generalizable

patterns that can be applied to

a solution.*

Algorithms & Programming Program Development E-AP-06: Modify, remix or

reuse part of an existing

program to create a new

program, giving attribution to

others.

M-AP-01: Distribute tasks

and maintain a project

timeline when collaboratively

developing computational

artifacts.

H-AP-01: Evaluate licenses

that limit or restrict use of

computational artifacts when

using resources such as

libraries.

Algorithms & Programming Program Development E-AP-07: Document, share

and reflect when creating

programs using correct

terminology.

M-AP-12: Develop a process

creating a computational

artifact that leads to a

minimum viable product

followed by reflection,

analysis, and iteration.

H-AP-02: Use a development

process in creating a

computational artifact that

leads to a minimum viable

product followed by

reflection, analysis, and

iteration.



Kentucky Academic Standards (KAS) for Computer Science 

Progression Chart

5 

Concept Subconcept Grades K-5 

By the end of Grade 5, 

students will be able to: 

Grades 6-8 

By the end of Grade 8, 

students will be able to: 

Grades 9-12 

By the end of Grade 12, 

students will be able to: 

Algorithms & Programming Program Development E-AP-08: Identify and

correct errors in an algorithm.

M-AP-03: Seek and

incorporate feedback from

team members and users to

refine a solution that meets

user needs.

H-AP-04: Design and

iteratively develop event-

driven computational artifacts

for practical intent, personal

expression, or to address a

societal issue.

Algorithms & Programming Program Development 

-

M-AP-08: Incorporate

existing code, media, and

libraries into original

programs, and give

attribution.

H-AP-08: Create artifacts by

using procedures within a

program, combinations of

data and procedures, or

independent but interrelated

programs.

Algorithms & Programming Program Development 

-

M-AP-09: Systematically test

and refine programs using a

range of test cases.

H-AP-09: Evaluate and

refine computational artifacts

to make them more usable

and accessible using

systematic testing and

debugging.

Algorithms & Programming Program Development 

-
M-AP-10: Document

programs in order to make

them easier to follow, test,

and debug.

H-AP-10: Systematically

design and develop programs

for broad audiences by

incorporating feedback from

users.

Algorithms & Programming Program Development 

-
M-AP-11: Evaluate licenses

that limit or restrict use of

computational artifacts when

using resources such as

libraries.

H-AP-11: Design and

develop computational

artifacts working in team

roles using collaborative

tools.*

Algorithms & Programming Program Development 
- f-

H-AP-12: Describe how

artificial intelligence drives

many software and physical

systems.*



Kentucky Academic Standards (KAS) for Computer Science 

Progression Chart

6 

Concept Subconcept Grades K-5 

By the end of Grade 5, 

students will be able to: 

Grades 6-8 

By the end of Grade 8, 

students will be able to: 

Grades 9-12 

By the end of Grade 12, 

students will be able to: 

Algorithms & Programming Program Development 

- -
H-AP-17: Construct

solutions to problems using

student-created components,

such as procedures, modules

and/or objects.*

Algorithms & Programming Program Development 
- -

H-AP-19: Select and employ

an appropriate component or

library to facilitate

programming solutions.*

Algorithms & Programming Program Development - - H-AP-20: Develop programs

for multiple computing

platforms.*

Algorithms & Programming Program Development 

- -

H-AP-22: Modify an existing

program to add additional

functionality and discuss

intended and unintended

implications (e.g., introducing

errors).*

Algorithms & Programming Program Development 

- -
H-AP-23: Evaluate key

qualities (including

correctness, usability,

readability, and efficiency) of

a program.*

Algorithms & Programming Program Development 

- -

H-AP-24: Compare multiple

programming languages and

discuss how their features

make them suitable for

solving different types of

problems.*

Impacts of Computing Culture E-IC-01: Discuss how

computing has impacted

society.

M-IC-01: Discuss issues of

bias and accessibility in

existing technologies.

H-IC-01: Reduce bias and

equity deficits through the

design of accessible

computational artifacts.



Kentucky Academic Standards (KAS) for Computer Science 

Progression Chart

7 

Concept Subconcept Grades K-5 

By the end of Grade 5, 

students will be able to: 

Grades 6-8 

By the end of Grade 8, 

students will be able to: 

Grades 9-12 

By the end of Grade 12, 

students will be able to: 

Impacts of Computing Culture 

-

M-IC-02: Compare the

positive & negative effects of

computing technologies on

society.

H-IC-03: Research how

computational innovations

that have revolutionized

aspects of our culture might

have evolved from a need to

solve a problem.

Impacts of Computing Culture 

- -

H-IC-06: Evaluate the impact

of the digital divide (i.e.

inequity of computing access,

education and influence) on

the development of local

communities and society.

Impacts of Computing Culture 

- -
H-IC-07: Demonstrate ways

computational design (i.e.

algorithms, abstractions and

analysis) can apply to

problems across disciplines.*

Impacts of Computing Social Interactions E-IC-02: Discover how

computing devices have

affected the way people

communicate.

M-IC-03: Collaborate with

others using appropriate tools

at the local, national, and/or

international levels.

H-IC-02: Evaluate and assess

how computing impacts

personal, ethical, social,

economic, and cultural

practices.

Impacts of Computing Safety, Law & Ethics E-IC-03: Evaluate the

relevance and appropriateness

of electronic information

sources and digital media.

-
H-IC-04: Explain the

beneficial and harmful effects

that laws governing data

(intellectual property, privacy

etc.) can have on innovation.

Impacts of Computing Safety, Law & Ethics E-IC-04: Understand the

importance of proper use of

data and information in a

computing society.

-
H-IC-05: Evaluate and

design computational artifacts

to maximize their benefit to

society.*



Kentucky Academic Standards (KAS) for Computer Science 

Progression Chart

8 

Concept Subconcept Grades K-5 

By the end of Grade 5, 

students will be able to: 

Grades 6-8 

By the end of Grade 8, 

students will be able to: 

Grades 9-12 

By the end of Grade 12, 

students will be able to: 

Impacts of Computing Safety, Law & Ethics 

-
M-IC-04: Discuss the benefits

and consequences of making

information either public or

private.

H-IC-08: Debate laws and

regulations that impact the

development and use of

software and the protection of

privacy.

Computing Systems Devices E-CS-01: Select and operate

appropriate software and

hardware to perform a variety

of tasks and recognize that

users have different needs

and preferences for the

technology they use.

M-CS-01: Recommend

improvements to the design

of computing devices based

on an analysis of how users

interact with the devices.

H-CS-01: Explain how

abstractions hide the

underlying implementation

details of computing systems

embedded in everyday

objects.

Computing Systems Hardware & Software E-CS-02: Identify and

describe the function of

common physical

components of computing

systems (hardware) using

appropriate terminology.

M-CS-02: Design projects

that combine hardware and

software components to

collect and exchange data.

H-CS-02: Compare levels of

abstraction and interactions

between application software,

system software and

hardware layers.

Computing Systems Hardware & Software - - H-CS-04: Categorize the

roles of operating system

software.

Computing Systems Hardware & Software 

- -
H-CS-05: Illustrate ways

computing systems

implement logic, input, and

output through hardware

components.*

Computing Systems Troubleshooting E-CS-03: Describe basic 
hardware and software 
problems using accurate 
terminology.

M-CS-03: Identify and fix 
problems with computing 
devices and their components 
systematically.

H-CS-03: Develop 
guidelines that convey 
systematic troubleshooting 
strategies that others can use 
to identify and fix errors.


	Table of Contents
	Introduction
	Background
	Kentucky’s Vision for Students
	Legal Basis
	KRS 156:160 Promulgation of administrative regulations by the Kentucky Board of Education


	Writers’ Vision Statement
	Design Considerations
	What is Computer Science Education?
	Technology Standards vs. Computer Science Standards

	Consulted Partners

	Standards Use and Development
	The Kentucky Academic Standards (KAS) are Standards, not Curriculum
	Translating the Standards into Curriculum

	Organization of the Standards
	Standards Structure and Identifiers
	Grade Bands and Grade Level Considerations

	Supplementary Materials to the Standards

	Kentucky Academic Standards (KAS) for Computer Science
	Elementary (K-5) Computer Science Standards
	Middle School (6-8) Computer Science Standards
	High School (9-12) Computer Science

	References
	Appendix A: Glossary of Terms
	Appendix B: Writing and Review Committees
	Appendix C: Standards Progression Chart



